Mature adipocytes inhibit differentiation of myogenic cells but stimulate proliferation of fibro-adipogenic precursors derived from trout muscle in vitro – Scientific Reports

  • Daniel, Z. C. T. R., Brameld, J. M., Craigon, J., Scollan, N. D. & Buttery, P. J. Effect of maternal dietary restriction during pregnancy on lamb carcass characteristics and muscle fiber composition1. J. Anim. Sci. 85, 1565–1576 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ford, S. P. et al. Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring1. J. Anim. Sci. 85, 1285–1294 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karunaratne, J. P., Bayol, S. A., Ashton, C. J., Simbi, B. H. & Stickland, N. C. Potential molecular mechanisms for the prenatal compartmentalisation of muscle and connective tissue in pigs. Differentiation 77, 290–297 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rehfeldt, C. & Kuhn, G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis1. J. Anim. Sci. 84, E113–E123 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, P. J. et al. Influence of birth weight on gene regulators of lipid metabolism and utilization in subcutaneous adipose tissue and skeletal muscle of neonatal pigs. Reproduction 138, 609–617 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonnet, M. et al. Prediction of the secretome and the surfaceome: A strategy to decipher the crosstalk between adipose tissue and muscle during fetal growth. IJMS 21, 4375 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eshima, H. et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol. Rep. 5, e13250 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J., Cai, M., Si, Y., Zhang, J. & Du, S. Knockout of myomaker results in defective myoblast fusion, reduced muscle growth and increased adipocyte infiltration in zebrafish skeletal muscle. Hum. Mol. Genet. 27, 3542–3554 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lefevre, F. et al. Selection for muscle fat content and triploidy affect flesh quality in pan-size rainbow trout, Oncorhynchus mykiss. Aquaculture 448, 569–577 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lefevre, F. et al. From the third to the seventh generation of selection for muscle fat content in rainbow trout: Consequences for flesh quality (2023).

  • Weil, C., Lefèvre, F. & Bugeon, J. Characteristics and metabolism of different adipose tissues in fish. Rev. Fish Biol. Fish. 23, 157–173 (2013).

    Article 

    Google Scholar
     

  • Weil, C., Sabin, N., Bugeon, J., Paboeuf, G. & Lefèvre, F. Differentially expressed proteins in rainbow trout adipocytes isolated from visceral and subcutaneous tissues. Comp. Biochem. Physiol. Part D Genomics Proteomics 4, 235–241 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bouraoui, L., Gutiérrez, J. & Navarro, I. Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss). J. Endocrinol. 198, 459–469 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salmerón, C., Acerete, L., Gutiérrez, J., Navarro, I. & Capilla, E. Characterization and endocrine regulation of proliferation and differentiation of primary cultured preadipocytes from gilthead sea bream (Sparus aurata). Domest. Anim. Endocrinol. 45, 1–10 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Basto-Silva, C. et al. Gilthead seabream (Sparus aurata) in vitro adipogenesis and its endocrine regulation by leptin, ghrelin, and insulin. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 249, 110772 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bou, M. et al. Gene expression profile during proliferation and differentiation of rainbow trout adipocyte precursor cells. BMC Genomics 18, 347 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, J. X. et al. 3D adipose tissue culture links the organotypic microenvironment to improved adipogenesis. Adv. Sci. 8, e2100106 (2021).

    Article 

    Google Scholar
     

  • Volz, A.-C., Omengo, B., Gehrke, S. & Kluger, P. J. Comparing the use of differentiated adipose-derived stem cells and mature adipocytes to model adipose tissue in vitro. Differentiation 110, 19–28 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albalat, A. et al. Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R259–R265 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vianen, G. J., Obels, P. P., van den Thillart, G. E. & Zaagsma, J. β-Adrenoceptors mediate inhibition of lipolysis in adipocytes of tilapia (Oreochromis mossambicus). Am. J. Physiol. Endocrinol. Metab. 282, E318–E325 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albalat, A., Gutiérrez, J. & Navarro, I. Regulation of lipolysis in isolated adipocytes of rainbow trout (Oncorhynchus mykiss): The role of insulin and glucagon. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 142, 347–354 (2005).

    Article 

    Google Scholar
     

  • Rodbell, M. Metabolism of isolated fat cells: I. Effects of hormones on glucose metabolism and lipolysiS. J. Biol. Chem. 239, 375–380 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernyhough, M. E. et al. Primary adipocyte culture: Adipocyte purification methods may lead to a new understanding of adipose tissue growth and development. Cytotechnology 46, 163–172 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salmerón, C. et al. Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout. Gen. Comp. Endocrinol. 210, 114–123 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Stickland, N. C. Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri).

  • Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brun, C. E., Chevalier, F. P., Dumont, N. A. & Rudnicki, M. A. Chapter 10—The satellite cell niche in skeletal muscle. In Biology and Engineering of Stem Cell Niches (eds Vishwakarma, A. & Karp, J. M.) 145–166 (Academic Press, 2017).

    Chapter 

    Google Scholar
     

  • Gabillard, J. C., Sabin, N. & Paboeuf, G. In vitro characterization of proliferation and differentiation of trout satellite cells. Cell Tissue Res. 342, 471–477 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • De Micheli, A. J. et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. 30, 3583-3595.e5 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dell’Orso, S. et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 146, dev174177 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S., Baek, K. & Choi, C. Suppression of adipogenic differentiation by muscle cell-induced decrease in genes related to lipogenesis in muscle and fat co-culture system: Muscle cells reduce preadipocyte differentiation. Cell Biol. Int. 37, 1003–1009 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodson, M. V., Vierck, J. L., Hossner, K. L., Byrne, K. & McNamara, J. P. The development and utility of a defined muscle and fat co-culture system. Tissue Cell 29, 517–524 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takegahara, Y., Yamanouchi, K., Nakamura, K., Nakano, S. & Nishihara, M. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner. Exp. Cell Res. 324, 105–114 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dietze, D. et al. Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes 51, 2369–2376 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellegrinelli, V. et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity. Diabetes 64, 3121–3134 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Wang, L., You, W. & Shan, T. Myokines mediate the cross talk between skeletal muscle and other organs. J. Cell Physiol. 236, 2393–2412 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanford, K. I. & Goodyear, L. J. Muscle-adipose tissue cross talk. Cold Spring Harb. Perspect. Med. 8, a029801 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karastergiou, K. & Mohamed-Ali, V. The autocrine and paracrine roles of adipokines. Mol. Cell. Endocrinol. 318, 69–78 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punyadeera, C. et al. The effects of exercise and adipose tissue lipolysis on plasma adiponectin concentration and adiponectin receptor expression in human skeletal muscle. Eur. J. Endocrinol. 152, 427–436 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicholson, T., Church, C., Baker, D. J. & Jones, S. W. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J. Inflamm. 15, 9 (2018).

    Article 

    Google Scholar
     

  • Argilés, J. M., López-Soriano, J., Almendro, V., Busquets, S. & López-Soriano, F. J. Cross-talk between skeletal muscle and adipose tissue: A link with obesity?: muscle-fat metabolic interrelationships. Med. Res. Rev. 25, 49–65 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Tomas, E. et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc. Nutr. Soc. 63, 381–385 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-adipogenic progenitors cross-talk in skeletal muscle: The social network. Front. Physiol. 10, 1074 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garikipati, D. K., Gahr, S. A. & Rodgers, B. D. Identification, characterization, and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes. J. Endocrinol. 190, 879–888 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garikipati, D. K., Gahr, S. A., Roalson, E. H. & Rodgers, B. D. Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): Genomic organization, differential expression, and pseudogenization. Endocrinology 148, 2106–2115 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondo, H. et al. EST analysis on adipose tissue of rainbow trout Oncorhynchus mykiss and tissue distribution of adiponectin. Gene 485, 40–45 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hue, I. et al. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front. Endocrinol. 14, 1155202 (2023).

    Article 

    Google Scholar
     

  • Sánchez-Gurmaches, J., Cruz-Garcia, L., Gutiérrez, J. & Navarro, I. Adiponectin effects and gene expression in rainbow trout: An in vivo and in vitro approach. J. Exp. Biol. 215, 1373–1383 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rallière, C., Jagot, S., Sabin, N. & Gabillard, J. C. Dynamics of pax7 expression during development, muscle regeneration, and in vitro differentiation of satellite cells in the trout. https://doi.org/10.1101/2023.07.19.549701 (2023).

  • Björntorp, P. Metabolic implications of body fat distribution. Diabetes Care 14, 1132–1143 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Porter, S. A. et al. Abdominal subcutaneous adipose tissue: A protective fat depot?. Diabetes Care 32, 1068–1075 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Item, F. & Konrad, D. Visceral fat and metabolic inflammation: The portal theory revisited: Visceral fat and metabolic inflammation. Obes. Rev. 13, 30–39 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kahn, D. et al. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: Implications for metabolic disease. Endocrinology 163, bqac140 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J., Gan, L., Yang, H. & Sun, C. The proliferation and differentiation characteristics of co-cultured porcine preadipocytes and muscle satellite cells in vitro. Mol. Biol. Rep. 40, 3197–3202 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, K., Suzuki, T., Kobayashi, K. & Nishimura, T. Adipocytes suppress differentiation of muscle cells in a co-culture system. Anim. Sci. J. 90, 423–434 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, L. et al. Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens. BMC Genomics 19, 838 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Hattab, M. Y. et al. Human adipocyte conditioned medium promotes in vitro fibroblast conversion to myofibroblasts. Sci. Rep. 10, 10286 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Mol. Biol. Rep. 41, 7543–7553 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Considine, R. V. et al. Paracrine stimulation of preadipocyte-enriched cell cultures by mature adipocytes. Am. J. Physiol. Endocrinol. Metab. 270, E895–E899 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Maumus, M. et al. Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: Influence of fat mass microenvironment and growth. J. Clin. Endocrinol. Metab. 93, 4098–4106 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar