Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches

  • Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor encoded by the Eph gene. Science. 1987;238:1717–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Committee EN. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell. 1997;90:403–4.

    Article 

    Google Scholar
     

  • Darling TK, Lamb TJ. Emerging roles for Eph receptors and ephrin ligands in immunity. Front Immunol. 2019;10:1473.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5:a009159.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barquilla A, Pasquale EB. Eph receptors and ephrins: therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2015;55:465–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstmann K, Zimmer G. The role of the Eph/ephrin family during cortical development and cerebral malformations. Med Res Archiv. 2018;6:3.

  • Klein R. Eph/ephrin signalling during development. Development. 2012;139:4105–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilkinson DG. Regulation of cell differentiation by Eph receptor and ephrin signaling. Cell Adhes Migr. 2014;8:339–48.

    Article 

    Google Scholar
     

  • North HA, Zhao X, Kolk SM, Clifford MA, Ziskind DM, Donoghue MJ. Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling. Development. 2009;136:2467–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu R, Wang X, Davy A, Wu C, Murai K, Zhang H, et al. Regulation of neural progenitor cell state by ephrin-B. J Cell Biol. 2008;181:973–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arvanitis DN, Jungas T, Behar A, Davy A. Ephrin-B1 reverse signaling controls a posttranscriptional feedback mechanism via miR-124. Mol Cell Biol. 2010;30:2508–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002;3:475–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi Y, Pasquale EB. Eph receptors in the adult brain. Curr Opin Neurobiol. 2004;14:288–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tremblay ME, Riad M, Bouvier D, Murai KK, Pasquale EB, Descarries L, et al. Localization of EphA4 in axon terminals and dendritic spines of adult rat hippocampus. J Comp Neurol. 2007;501:691–702.

    Article 
    PubMed 

    Google Scholar
     

  • Conover JC, Doetsch F, Garcia-Verdugo J-M, Gale NW, Yancopoulos GD, Alvarez-Buylla A. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci. 2000;3:1091–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakamoto A, Ishibashi-Ueda H, Sugamoto Y, Higashikata T, Miyamoto S, Kawashiri M-A, et al. Expression and function of ephrin-B1 and its cognate receptor EphB2 in human atherosclerosis: from an aspect of chemotaxis. Clin Sci. 2008;114:643–50.

    Article 
    CAS 

    Google Scholar
     

  • Durbin L, Brennan C, Shiomi K, Cooke J, Barrios A, Shanmugalingam S, et al. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev. 1998;12:3096–109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor H, Campbell J, Nobes CD. Ephs and ephrins. Curr Biol. 2017;27:R90–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10:165–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang L-Y, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene. 2019;38:6567–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci. 2004;5:45–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dravis C. Ephs, ephrins, and bidirectional signaling. Nat Educ. 2010;3:22.


    Google Scholar
     

  • Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol. 2010;17:398–402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahoo AR, Buck M. Structural and functional insights into the transmembrane domain association of eph receptors. Int J Mol Sci. 2021;22:8593.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Fuentes EJ. Emerging themes in PDZ domain signaling: structure, function, and inhibition. Int Rev Cell Mol Biol. 2019;343:129–218.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell ID, Spitzfaden C. Building proteins with fibronectin type III modules. Structure. 1994;2:333–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol. 2000;20:4791–805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci. 2009;12:15–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasquale EB. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005;6:462–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell. 2001;106:745–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoto J, Chen L. Bidirectional ephrin/Eph signaling in synaptic functions. Brain Res. 2007;1184:72–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell. 2002;9:725–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C, Serban G, et al. Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB‐induced Src phosphorylation and signaling. EMBO J. 2006;25:1242–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knöll B, Drescher U. Src family kinases are involved in EphA receptor-mediated retinal axon guidance. J Neurosci. 2004;24:6248–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ségaliny AI, Tellez-Gabriel M, Heymann M-F, Heymann D. Receptor tyrosine kinases: characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015;4:1–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locke C. Effects of localized EphB2 stimulation on dendritic filopodia of hippocampal neurons. PhD thesis, University of Massachusetts Amherst (2018).

  • Noren NK, Pasquale EB. Eph receptor–ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal. 2004;16:655–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herath NI, Boyd AW. The role of Eph receptors and ephrin ligands in colorectal cancer. Int J Cancer. 2010;126:2003–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim K, Lee S-A, Park D. Emerging roles of ephexins in physiology and disease. Cells. 2019;8:87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell. 2001;105:233–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, et al. Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron. 2005;46:191–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogita H, Kunimoto S, Kamioka Y, Sawa H, Masuda M, Mochizuki N. EphA4-mediated Rho activation via Vsm-RhoGEF expressed specifically in vascular smooth muscle cells. Circ. Res. 2003;93:23–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J-C, Yao W, Qu Y, Nakamura M, Dong C, Yang C, et al. Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep. 2017;7:7133.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54:1270–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sell GL, Schaffer TB, Margolis SS. Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice. J Clin Investig. 2017;127:1646–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irie F, Yamaguchi Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat Neurosci. 2002;5:1117–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Penzes P, Beeser A, Chernoff J, Schiller MR, Eipper BA, Mains RE, et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron. 2003;37:263–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Govek E-E, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev. 2005;19:1–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Billuart P, Bienvenu T, Ronce N, Des Portes V, Vinet MC, Zemni R, et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature. 1998;392:923–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bienvenu T, Des Portes V, McDonell N, Carrié A, Zemni R, Couvert P, et al. Missense mutation in PAK3, R67C, causes X‐linked nonspecific mental retardation. Am J Med Genet. 2000;93:294–8.

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/1096-8628(20000814)93:43.0.CO;2-F” data-track-item_id=”10.1002/1096-8628(20000814)93:43.0.CO;2-F” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1096-8628%2820000814%2993%3A4%3C294%3A%3AAID-AJMG8%3E3.0.CO%3B2-F” aria-label=”Article reference 51″ data-doi=”10.1002/1096-8628(20000814)93:43.0.CO;2-F”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kutsche K, Yntema H, Brandt A, Jantke I, Gerd Nothwang H, Orth U, et al. Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat Genet. 2000;26:247–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Ruley HE. An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J Biol Chem. 1998;273:24670–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson DG. Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development. 1998;125:443–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arvanitis DN, Davy A. Regulation and misregulation of Eph/ephrin expression. Cell Adhes Migr. 2012;6:131–7.

    Article 

    Google Scholar
     

  • Ting M-C, Wu NL, Roybal PG, Sun J, Liu L, Yen Y, et al. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development. 2009;136:855–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kania A, Jessell TM. Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A: EphA interactions. Neuron. 2003;38:581–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salsi V, Zappavigna V. Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs. J Biol Chem. 2006;281:1992–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111:251–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Frigola C, Carreres MI, Vegar C, Mason C, Herrera E. Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and-independent mechanisms. Development. 2008;135:1833–41.

    Article 
    PubMed 

    Google Scholar
     

  • Bruhl T, Urbich C, Aicher D, Acker-Palmer A, Zeiher AM, Dimmeler S. Homeobox A9 transcriptionally regulates the EphB4 receptor to modulate endothelial cell migration and tube formation. Circ. Res. 2004;94:743–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooke J, Moens C, Roth L, Durbin L, Shiomi K, Brennan C, et al. Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development. 2001;128:571–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voss AK, Gamble R, Collin C, Shoubridge C, Corbett M, Gecz J, et al. Protein and gene expression analysis of Phf6, the gene mutated in the Borjeson-Forssman-Lehmann Syndrome of intellectual disability and obesity. Gene Expr Patterns. 2007;7:858–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Mejia LA, Huang J, Valnegri P, Bennett EJ, Anckar J, et al. The X-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain. Neuron. 2013;78:986–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng C, Deng PY, Ikeuchi Y, Yuede C, Li D, Rensing N, et al. Characterization of a mouse model of Borjeson-Forssman-Lehmann syndrome. Cell Rep. 2018;25:1404–14.e1406.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao MM, Todd MA, Kontny U, Neas K, Sullivan MJ, Hunter AG, et al. T-cell acute lymphoblastic leukemia in association with Borjeson-Forssman-Lehmann syndrome due to a mutation in PHF6. Pediatr Blood Cancer. 2010;55:722–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crawford J, Lower KM, Hennekam RC, Van Esch H, Megarbane A, Lynch SA, et al. Mutation screening in Borjeson-Forssman-Lehmann syndrome: identification of a novel de novo PHF6 mutation in a female patient. J Med Genet. 2006;43:238–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gecz J, Turner G, Nelson J, Partington M. The Borjeson-Forssman-Lehman syndrome (BFLS, MIM #301900). Eur J Hum Genet. 2006;14:1233–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jahani-Asl A, Cheng C, Zhang C, Bonni A. Pathogenesis of Borjeson-Forssman-Lehmann syndrome: insights from PHF6 function. Neurobiol Dis. 2016;96:227–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lower KM, Solders G, Bondeson ML, Nelson J, Brun A, Crawford J, et al. 1024C> T (R342X) is a recurrent PHF6 mutation also found in the original Borjeson-Forssman-Lehmann syndrome family. Eur J Hum Genet. 2004;12:787–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lower KM, Turner G, Kerr BA, Mathews KD, Shaw MA, Gedeon AK, et al. Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome. Nat Genet. 2002;32:661–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Todd MA, Ivanochko D, Picketts DJ. PHF6 degrees of separation: the multifaceted roles of a chromatin adaptor protein. Genes. 2015;6:325–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed R, Sarwar S, Hu J, Cardin V, Qiu LR, Zapata G, et al. Transgenic mice with an R342X mutation in Phf6 display clinical features of Börjeson–Forssman–Lehmann Syndrome. Hum Mol Genet. 2021;30:575–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasool D, Burban A, Sharanek A, Madrigal A, Hu J, Yan K, et al. PHF6-mediated transcriptional control of NSC via Ephrin receptors is impaired in the intellectual disability syndrome BFLS. EMBO Rep. 2024;0:1–26.


    Google Scholar
     

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calin GA, Liu C-G, Sevignani C, Ferracin M, Felli N, Dumitru CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci. 2004;101:11755–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karaca E, Aykut A, Ertürk B, Durmaz B, Güler A, Büke B, et al. MicroRNA expression profile in the prenatal amniotic fluid samples of pregnant women with Down syndrome. Balk Med J. 2018;35:163–6.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Song X-W, Zou J, Wang G-K, Kremneva E, Li X-Q, et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci. 2010;123:2444–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci. 2013;7:265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q-S, Liu W, Lu G-X. miR-200a-3p promotes β-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease. J Biosci. 2017;42:397–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker-Daniels J, Hess AR, Hendrix MJ, Kinch MS. Differential regulation of EphA2 in normal and malignant cells. Am J Pathol. 2003;162:1037–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menges C, McCance D. Constitutive activation of the Raf–MAPK pathway causes negative feedback inhibition of Ras–PI3K–AKT and cellular arrest through the EphA2 receptor. Oncogene. 2008;27:2934–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C, et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell. 2005;8:111–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu N, Zhao X, Liu M, Liu H, Yao W, Zhang Y, et al. Role of microRNA-26b in glioma development and its mediated regulation on EphA2. PloS ONE. 2011;6:e16264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Yang H, Zhou X, Zhang L, Lu X. MiR-93 targeting EphA4 promotes neurite outgrowth from spinal cord neurons. J Mol Neurosci. 2016;58:517–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283:15878–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L, et al. Elevated levels of hypoxia‐inducible microRNA‐210 in pre‐eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med. 2012;16:249–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Chen J, Tang C-X, Zhou X-Y, Gao D-S. Inverse expression levels of EphrinA3 and EphrinA5 contribute to dopaminergic differentiation of human SH-SY5Y cells. J Mol Neurosci. 2016;59:483–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danka Mohammed CP, Rhee H, Phee BK, Kim K, Kim HJ, Lee H, et al. miR‐204 downregulates EphB2 in aging mouse hippocampal neurons. Aging Cell. 2016;15:380–8.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ming G-l, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28:223–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeiss CJ. Comparative milestones in rodent and human postnatal central nervous system development. Toxicol Pathol. 2021;49:1368–73.

    Article 
    PubMed 

    Google Scholar
     

  • Kamelska-Sadowska AM, Wojtkiewicz J, Kowalski IM. Review of the current knowledge on the role of stem cell transplantation in neurorehabilitation. BioMed Res Int. 2019;2019:3290894.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaspard N, Vanderhaeghen P. Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol. 2010;20:37–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guillemot F. Cell fate specification in the mammalian telencephalon. Prog Neurobiol. 2007;83:37–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6:777–88.

    Article 
    PubMed 

    Google Scholar
     

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001;409:714–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malatesta P, Hartfuss E, Götz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development. 2000;127:5253–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18:383–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rakic P. Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad Sci. 1995;92:11323–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Contribution of intermediate progenitor cells to cortical histogenesis. Arch Neurol. 2007;64:639–42.

    Article 
    PubMed 

    Google Scholar
     

  • Stepien BK, Vaid S, Huttner WB. Length of the neurogenic period—a key determinant for the generation of upper-layer neurons during neocortex development and evolution. Front Cell Develop. Biol. 2021;9:676911.

    Article 

    Google Scholar
     

  • Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145:61–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatten ME. Central nervous system neuronal migration. Annu Rev Neurosci. 1999;22:511–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007;8:427–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci. 2004;101:3196–201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ernst C. Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci. 2016;39:290–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sacco R, Cacci E, Novarino G. Neural stem cells in neuropsychiatric disorders. Curr Opin Neurobiol. 2018;48:131–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gigek C, Chen E, Ota V, Maussion G, Peng H, Vaillancourt K, et al. A molecular model for neurodevelopmental disorders. Transl Psychiatry. 2015;5:e565–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen ES, Gigek CO, Rosenfeld JA, Maussion G, Chen GG, Vaillancourt K, et al. Molecular convergence of neurodevelopmental disorders. Am J Hum Genet. 2014;95:490–508.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Zhong X, Chau KF, Santistevan NJ, Guo W, Kong G, et al. Cell cycle-linked MeCP2 phosphorylation modulates adult neurogenesis involving the Notch signalling pathway. Nat Commun. 2014;5:5601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin P-I, Chien Y-L, Wu Y-Y, Chen C-H, Gau SS-F, Huang Y-S, et al. The WNT2 gene polymorphism associated with speech delay inherent to autism. Res Develop Disabil. 2012;33:1533–40.

    Article 

    Google Scholar
     

  • Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H, Hashimoto O, et al. Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene. Int J Neuropsychopharmacol. 2010;13:443–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin P, Yang X, Robin N, Lam E, Rabinowitz J, Erdman C, et al. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl Psychiatry. 2013;3:e301–01.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski RE, Pietila J, et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet. 2001;105:406–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iossifov I, O’roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Khouri E, Ghoumid J, Haye D, Giuliano F, Drevillon L, Briand-Suleau A, et al. Wnt/β-catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and autism spectrum disorders. Mol Psychiatry. 2021;26:3572–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakamoto I, Kishida S, Fukui A, Kishida M, Yamamoto H, Hino S-I, et al. A novel β-catenin-binding protein inhibits β-catenin-dependent Tcf activation and axis formation. J Biol Chem. 2000;275:32871–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi M, Kishida S, Fukui A, Michiue T, Miyamoto Y, Okamoto T, et al. Nuclear localization of Duplin, a β-catenin-binding protein, is essential for its inhibitory activity on the Wnt signaling pathway. J Biol Chem. 2002;277:5816–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, Nott A, et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci. 2016;19:1477–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:263–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development. 2019;146:dev156059.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ming G-l, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70:687–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urbán N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci. 2014;8:396.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genander M, Frisén J. Ephrins and Eph receptors in stem cells and cancer. Curr Opin Cell Biol. 2010;22:611–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theus MH, Ricard J, Bethea JR, Liebl DJ. EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells. 2010;28:1231–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holmberg J, Armulik A, Senti K-A, Edoff K, Spalding K, Momma S, et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 2005;19:462–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricard J, Salinas J, Garcia L, Liebl DJ. EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci. 2006;31:713–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katakowski M, Zhang Z, decarvalho AC, Chopp M. EphB2 induces proliferation and promotes a neuronal fate in adult subventricular neural precursor cells. Neurosci Lett. 2005;385:204–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Bellard ME, Ching W, Gossler A, Bronner-Fraser M. Disruption of segmental neural crest migration and ephrin expression in delta-1 null mice. Develop Biol. 2002;249:121–30.

    Article 
    PubMed 

    Google Scholar
     

  • Xing S, He Y, Ling L, Hou Q, Yu J, Zeng J, et al. Blockade of EphB2 enhances neurogenesis in the subventricular zone and improves neurological function after cerebral cortical infarction in hypertensive rats. Brain Res. 2008;1230:237–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Zeng J, Yu J, He M, Cui C, Zhao Z, et al. EphB2-Fc promotes activation of endogenous neural stem cells after cerebral cortex infarction: experimental with hypertensive rats. Zhonghua Yi Xue Za Zhi. 2005;85:2395–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Todd KL, Baker KL, Eastman MB, Kolling FW, Trausch AG, Nelson CE, et al. EphA4 regulates neuroblast and astrocyte organization in a neurogenic niche. J Neurosci. 2017;37:3331–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci. 2004;24:10064–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deininger K, Eder M, Kramer ER, Zieglgänsberger W, Dodt H-U, Dornmair K, et al. The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. Proc Natl Acad Sci. 2008;105:12539–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tremblay MÈ, Riad M, Chierzi S, Murai KK, Pasquale EB, Doucet G. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J Comp Neurol. 2009;512:798–813.

    Article 
    PubMed 

    Google Scholar
     

  • Goldshmit Y, Galea MP, Bartlett PF, Turnley AM. EphA4 regulates central nervous system vascular formation. J Comp Neurol. 2006;497:864–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowden TA, Aricescu AR, Nettleship JE, Siebold C, Rahman-Huq N, Owens RJ, et al. Structural plasticity of eph receptor A4 facilitates cross-class ephrin signaling. Structure. 2009;17:1386–97.

  • Qin H, Noberini R, Huan X, Shi J, Pasquale EB, Song J. Structural characterization of the EphA4-Ephrin-B2 complex reveals new features enabling Eph-ephrin binding promiscuity. J Biol Chem. 2010;285:644–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chumley MJ, Catchpole T, Silvany RE, Kernie SG, Henkemeyer M. EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J Neurosci. 2007;27:13481–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hara Y, Nomura T, Yoshizaki K, Frisén J, Osumi N. Impaired hippocampal neurogenesis and vascular formation in ephrin‐A5‐deficient mice. Stem Cells. 2010;28:974–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Taylor CJ, Newcombe EA, Spanevello MD, O’Keeffe I, Cooper LT, et al. EphA4 regulates hippocampal neural precursor proliferation in the adult mouse brain by d-serine modulation of N-Methyl-d-Aspartate receptor signaling. Cereb Cortex. 2019;29:4381–97.

    Article 
    PubMed 

    Google Scholar
     

  • Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, Miyajima M, et al. Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson’s disease. PloS ONE. 2012;7:e32019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willi R, Winter C, Wieske F, Kempf A, Yee B, Schwab M, et al. Loss of EphA4 impairs short‐term spatial recognition memory performance and locomotor habituation. Genes Brain Behav. 2012;11:1020–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laussu J, Khuong A, Gautrais J, Davy A. Beyond boundaries—Eph: ephrin signaling in neurogenesis. Cell Adhes Migr. 2014;8:349–59.

    Article 
    CAS 

    Google Scholar
     

  • Aoki M, Yamashita T, Tohyama M. EphA receptors direct the differentiation of mammalian neural precursor cells through a mitogen-activated protein kinase-dependent pathway. J Biol Chem. 2004;279:32643–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Homman-Ludiye J, Kwan WC, De Souza MJ, Rodger J, Bourne JA. Ephrin-A2 regulates excitatory neuron differentiation and interneuron migration in the developing neocortex. Sci Rep. 2017;7:11813.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Reuven L, Reiner O. Dynamics of cortical progenitors and production of subcerebral neurons are altered in embryos of a maternal inflammation model for autism. Mol Psychiatry. 2021;26:1535–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu D, Zhang F, Wang Y, Sun Y, Xu Z. Microcephaly-associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep. 2014;6:104–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell. 1998;92:51–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp H-P, et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron. 2001;32:1027–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martone ME, Holash JA, Bayardo A, Pasquale EB, Ellisman MH. Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res. 1997;771:238–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kayser MS, Nolt MJ, Dalva MB. EphB receptors couple dendritic filopodia motility to synapse formation. Neuron. 2008;59:56–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Contractor A, Rogers C, Maron C, Henkemeyer M, Swanson GT, Heinemann SF. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science. 2002;296:1864–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourgin C, Murai KK, Richter M, Pasquale EB. The EphA4 receptor regulates dendritic spine remodeling by affecting β1-integrin signaling pathways. J Cell Biol. 2007;178:1295–307.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simón, de Maturana AM, R.L, Ricobaraza A, Escribano L, Schiapparelli L, et al. Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease. J Alzheimer’s Dis. 2009;17:773–86.

    Article 

    Google Scholar
     

  • Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature. 2011;469:47–52.

    Article 
    PubMed 

    Google Scholar
     

  • Mroczko B, Groblewska M, Litman-Zawadzka A, Kornhuber J, Lewczuk P. Cellular receptors of amyloid β oligomers (AβOs) in Alzheimer’s disease. Int J Mol Sci. 2018;19:1884.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in Alzheimer’s disease. Front Neurosci. 2019;13:43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Sawada T, Sakaguchi K, Han F. Direct interaction of receptor tyrosine kinases, EphA4 and PDGFRβ, plays an important role in the proliferation of neural stem cells. J Neurorestoratol. 2017;5:133–41.

    Article 
    CAS 

    Google Scholar
     

  • Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Mol Asp Med. 2018;62:63–74.

    Article 
    CAS 

    Google Scholar
     

  • Ishii Y, Hamashima T, Yamamoto S, Sasahara M. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathol Int. 2017;67:235–46.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Q, Song H, Liu C, Xu J, Wei C, Wang W, et al. The interaction of EphA4 with PDGFRβ regulates proliferation and neuronal differentiation of neural progenitor cells in vitro and promotes neurogenesis in vivo. Front Aging Neurosci. 2020;12:7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell. 2012;22:765–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS, et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell. 2013;23:238–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakada M, Anderson EM, Demuth T, Nakada S, Reavie LB, Drake KL, et al. The phosphorylation of ephrin‐B2 ligand promotes glioma cell migration and invasion. Int J Cancer. 2010;126:1155–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3:541–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qazi MA, Vora P, Venugopal C, Adams J, Singh M, Hu A, et al. Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer stem cells reduces growth of recurrent glioblastoma. Cancer Res. 2018;78:5023–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu Y, He S, Fu J, Li G, Xu R, Lu H, et al. Expression of EphrinB2 and EphB4 in glioma tissues correlated to the progression of glioma and the prognosis of glioblastoma patients. Clin Transl Oncol. 2012;14:214–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakada M, Drake KL, Nakada S, Niska JA, Berens ME. Ephrin-B3 ligand promotes glioma invasion through activation of Rac1. Cancer Res. 2006;66:8492–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakada M, Niska JA, Miyamori H, McDonough WS, Wu J, Sato H, et al. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res. 2004;64:3179–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu B, Li Y, Mao X. A review on the role of different ephrins in glioma. Eur J Pharmacol. 2022;917:174588.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu W, Song S, Chen W, Zhang J, Yang H, Chen Y. Hypoxia-induced EPHB2 promotes invasive potential of glioblastoma. Int J Clin Exp Pathol. 2019;12:539.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biamonte F, Sica G, Filippini A, D’Alessio A. Evidence of reelin signaling in GBM and its derived cancer stem cells. Brain Sci. 2021;11:745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouché E, Romero-Ortega MI, Henkemeyer M, Catchpole T, Leemhuis J, Frotscher M, et al. Reelin induces EphB activation. Cell Res. 2013;23:473–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sentürk A, Pfennig S, Weiss A, Burk K, Acker-Palmer A. Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature. 2011;472:356–60.

    Article 
    PubMed 

    Google Scholar
     

  • Qurashi A, Li X, Jin P. Fragile X mental retardation protein and stem cells. Results and Problems in Cell Differentiation vol. 54:157–64, Springer; 2012.

  • Jeon SJ, Kim J-W, Kim KC, Han SM, Go HS, Seo JE, et al. Translational regulation of NeuroD1 expression by FMRP: involvement in glutamatergic neuronal differentiation of cultured rat primary neural progenitor cells. Cell Mol Neurobiol. 2014;34:297–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong X, Zhang K, Wang Y, Wang J, Cui Y, Li S, et al. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation. Biochem Biophys Res Commun. 2013;439:493–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scotto-Lomassese S, Nissant A, Mota T, Néant-Féry M, Oostra BA, Greer CA, et al. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb. J Neurosci. 2011;31:2205–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callan MA, Cabernard C, Heck J, Luois S, Doe CQ, Zarnescu DC. Fragile X protein controls neural stem cell proliferation in the Drosophila brain. Hum Mol Genet. 2010;19:3068–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castren M, Tervonen T, Kärkkäinen V, Heinonen S, Castrén E, Larsson K, et al. Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci. 2005;102:17834–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bustos F, Segarra-Fas A, Chaugule VK, Brandenburg L, Branigan E, Toth R, et al. RNF12 X-linked intellectual disability mutations disrupt E3 ligase activity and neural differentiation. Cell Rep. 2018;23:1599–611.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Huang H, Zhou F, Schimmel J, Pardo CG, Zhang T, et al. RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation. Mol Cell. 2012;46:650–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Telias M, Ben-Yosef D. Modeling neurodevelopmental disorders using human pluripotent stem cells. Stem Cell Rev Rep. 2014;10:494–511.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwase S, Brookes E, Agarwal S, Badeaux AI, Ito H, Vallianatos CN, et al. A mouse model of X-linked intellectual disability associated with impaired removal of histone methylation. Cell Rep. 2016;14:1000–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korb E, Herre M, Zucker-Scharff I, Gresack J, Allis CD, Darnell RB. Excess translation of epigenetic regulators contributes to fragile X syndrome and is alleviated by Brd4 inhibition. Cell. 2017;170:1209–23.e1220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharanek A, Burban A, Hernandez-Corchado A, Madrigal A, Fatakdawala I, Najafabadi HS, et al. Transcriptional control of brain tumor stem cells by a carbohydrate binding protein. Cell Rep. 2021;36:109647.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lévy J, Schell B, Nasser H, Rachid M, Ruaud L, Couque N, et al. EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder. Clin Genet. 2021;100:396–404.

    Article 
    PubMed 

    Google Scholar
     

  • Lévy J, Haye D, Marziliano N, Casu G, Guimiot F, Dupont C, et al. EFNB2 haploinsufficien cy causes a syndromic neurodevelopmental disorder. Clin Genet. 2018;93:1141–7.