Search
Close this search box.

Local and systemic mechanisms that control the hair follicle stem cell niche – Nature Reviews Molecular Cell Biology

  • Morris, R. J. & Potten, C. S. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112, 470–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Müller-Röver, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001).

    Article  PubMed  Google Scholar 

  • Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Rendl, M., Polak, L. & Fuchs, E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22, 543–557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, Y.-C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, H. B. Growth of the hair. Physiol. Rev. 34, 113–126 (1954).

    Article  CAS  PubMed  Google Scholar 

  • Craven, A. J. et al. Prolactin delays hair regrowth in mice. J. Endocrinol. 191, 415–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, L. J. & Lenzy, Y. Nutrition and hair. Clin. Dermatol. 28, 412–419 (2010).

    Article  PubMed  Google Scholar 

  • Goldstein, J. et al. Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes Dev. 28, 983–994 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shwartz, Y. et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578–593.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B. et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577, 676–681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotsarelis, G., Sun, T.-T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677–14682 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    Article  PubMed  Google Scholar 

  • Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driskell, R. R. & Watt, F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani, W., Sinha, S. & Biernaskie, J. Immune modulation of hair follicle regeneration. NPJ Regen. Med. 5, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, K. N. et al. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. eLife 8, e45977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Heitman, N. et al. Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367, 161–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Kobielak, K., Pasolli, H. A., Alonso, L., Polak, L. & Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell Biol. 163, 609–623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, W.-M., Zhen, H. H. & Oro, A. E. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin–Shh regulatory loop. Genes Dev. 26, 1235–1246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar, S. E. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Sennett, R. & Rendl, M. Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23, 917–927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy, M. H. The secret life of the hair follicle. Trends Genet. 8, 55–61 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z. et al. Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle. eLife 4, e10567 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena, N., Mok, K.-W. & Rendl, M. An updated classification of hair follicle morphogenesis. Exp. Dermatol. 28, 332–344 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Ullrich, R. & Paus, R. Molecular principles of hair follicle induction and morphogenesis. BioEssays 27, 247–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ouspenskaia, T., Matos, I., Mertz, A. F., Fiore, V. F. & Fuchs, E. WNT-SHH antagonism specifies and expands stem cell prior. to niche formation. Cell 164, 156–169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita, R. et al. Tracing the origin of hair follicle stem cells. Nature 594, 547–552 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Oliver, R. F. The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. J. Embryol. Exp. Morphol. 23, 219–236 (1970).

    CAS  PubMed  Google Scholar 

  • Jahoda, Ca. B., Horne, K. A. & Oliver, R. F. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311, 560–562 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Paus, R. Principles of hair cycle control. J. Dermatol. 25, 793–802 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Kobielak, K., Stokes, N., Cruz, J., de la, Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl Acad. Sci. USA 104, 10063–10068 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem. Cells Cell 132, 299–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Oshimori, N. & Fuchs, E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10, 63–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, B. A. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb. Perspect. Med. 4, a015180 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rompolas, P. et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496–499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foitzik, K. et al. Control of murine hair follicle regression (catagen) by TGF-β1 in vivo. FASEB J. 14, 752–760 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Mesa, K. R. et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522, 94–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harshuk-Shabso, S., Dressler, H., Niehrs, C., Aamar, E. & Enshell-Seijffers, D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat. Commun. 11, 5114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani, W. et al. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev. Cell 31, 543–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Martino, P. A., Heitman, N. & Rendl, M. The dermal sheath: an emerging component of the hair follicle stem cell niche. Exp. Dermatol. 30, 512–521 (2021).

    Article  PubMed  Google Scholar 

  • Martino, P. et al. Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat. Cell Biol. 25, 222–234 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cell vivo. Cell 135, 240–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Cristancho, A. G. & Lazar, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Gonzalez, G. C. et al. Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling axis. Cell Stem Cell 19, 738–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyes, B. E. et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc. Natl Acad. Sci. USA 110, E4950–E4959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, Y.-C., Li, L. & Fuchs, E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B. & Hsu, Y.-C. Emerging roles of transit-amplifying cells in tissue regeneration and cancer. Wiley Interdiscip. Rev. Dev. Biol. 6, 10.1002/wdev.282 (2017).

    Article  PubMed Central  Google Scholar 

  • Kimura-Ueki, M. et al. Hair cycle resting phase is regulated by cyclic epithelial FGF18 signaling. J. Invest. Dermatol. 132, 1338–1345 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Perdigoto, C. N. et al. Polycomb-mediated repression and sonic hedgehog signaling interact to regulate merkel cell specification during skin development. PLoS Genet. 12, e1006151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiwara, H. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botchkarev, V. A., Botchkareva, N. V., Peters, E. M. & Paus, R. Epithelial growth control by neurotrophins: leads and lessons from the hair follicle. Prog. Brain Res. 146, 493–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Rutlin, M. et al. The cellular and molecular basis of direction selectivity of Aδ-LTMRs. Cell 159, 1640–1651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, C.-C. et al. Hair follicle epidermal stem cells define a niche for tactile sensation. eLife 7, e3883 (2018).

    Article  Google Scholar 

  • Peng, J., Chen, H. & Zhang, B. Nerve–stem cell crosstalk in skin regeneration and diseases. Trends Mol. Med. 28, 583–595 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Li, K. N. & Tumbar, T. Hair follicle stem cells as a skin-organizing signaling center during adult homeostasis. EMBO J. 40, e107135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B. et al. Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes. Dev. 30, 2325–2338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durward, A. & Rudall, K. M. in The Biology of Hair Growth (eds Montagna, W. & Ellis, R. A.) ch. 9 189–218 (Academic Press, 1958).

  • Moretti, G., Ellis, R. A. & Mescon, H. Vascular patterns in the skin of the face. J. Invest. Dermatol. 33, 103–112 (1959).

    Article  CAS  PubMed  Google Scholar 

  • Skobe, M. & Detmar, M. Structure, function, and molecular control of the skin lymphatic system. J. Investig. Dermatol. Symp. Proc. 5, 14–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kam, C. Y. et al. Mechanisms of skin vascular maturation and maintenance captured by longitudinal imaging of live mice. Cell 186, 2345–2360.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Li, K. N., Chovatiya, G., Ko, D. Y., Sureshbabu, S. & Tumbar, T. Blood endothelial ALK1–BMP4 signaling axis regulates adult hair follicle stem cell activation. EMBO J. 42, e112196 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Braverman, I. M. Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J. Invest. Dermatol. 93, S2–S9 (1989).

    Article  Google Scholar 

  • Gay, D. & Ito, M. The seed tends to the soil: hair follicle stem cells remodel their lymphatic niche. Cell Stem Cell 25, 733–734 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Peña-Jimenez, D. et al. Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J. 38, e101688 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gur-Cohen, S. et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 366, 1218–1225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Meglio, P., Perera, G. K. & Nestle, F. O. The multitasking organ: recent insights into skin immune function. Immunity 35, 857–869 (2011).

    Article  PubMed  Google Scholar 

  • Quaresma, J. A. S. Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clin. Microbiol. Rev. 32, e00034-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lay, K. et al. Stem cells repurpose proliferation to contain a breach in their niche barrier. eLife 7, e41661 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Paus, R., Nickoloff, B. J. & Ito, T. A ‘hairy’ privilege. Trends Immunol. 26, 32–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Castellana, D., Paus, R. & Perez-Moreno, M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLOS Biol. 12, e1002002 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, E. C. E., Dai, Z., Ferrante, A. W., Drake, C. G. & Christiano, A. M. A subset of TREM2+ dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24, 654–669.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, N. & Rosenblum, M. D. Regulatory T cells in skin. Immunology 152, 372–381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, A. S., Nay, T. & Turner, H. N. Growth of the mouse coat. II. Effect of sex and pregnancy. Aust. J. Biol. Sci. 6, 645–656 (1953).

    Article  CAS  PubMed  Google Scholar 

  • Movérare, S., Lindberg, M. K., Ohlsson, C., Faergemann, J. & Gustafsson, J.-Å. Estrogen receptor α, but not estrogen receptor β, is involved in the regulation of the hair follicle cycling as well as the thickness of epidermis in male mice. J. Invest. Dermatol. 119, 1053–1058 (2002).

    Article  PubMed  Google Scholar 

  • Osthaus, B. et al. Hair coat properties of donkeys, mules and horses in a temperate climate. Equine Vet. J. 50, 339–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, M. S. et al. Transcriptomic regulation of seasonal coat color change in hares. Ecol. Evol. 10, 1180–1192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien, C., Darcy-Dunne, M. R. & Murphy, B. A. The effects of extended photoperiod and warmth on hair growth in ponies and horses at different times of year. PLoS ONE 15, e0227115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tietgen, L. et al. Fur colour in the Arctic fox: genetic architecture and consequences for fitness. Proc. R. Soc. B Biol. Sci. 288, 20211452 (2021).

    Article  CAS  Google Scholar 

  • Roman, K., Wilk, M., Książek, P., Czyż, K. & Roman, A. the effect of the season, the maintenance system and the addition of polyunsaturated fatty acids on selected biological and physicochemical features of rabbit fur. Animals 12, 971 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Aragona, M. et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 584, 268–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y. et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell 29, 70–85.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Cotsarelis, G. & Millar, S. E. Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med. 7, 293–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lei, M. & Chuong, C.-M. Aging, alopecia, and stem cells. Science 351, 559–560 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Meacham, C. E., DeVilbiss, A. W. & Morrison, S. J. Metabolic regulation of somatic stem cells in vivo. Nat. Rev. Mol. Cell Biol. 23, 428–443 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kim, C. S. et al. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle. Cell Metab. 32, 629–642.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Karnik, P. et al. Hair follicle stem cell-specific PPARγ deletion causes scarring alopecia. J. Invest. Dermatol. 129, 1243–1257 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Deng, Z. et al. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. J. Mol. Cell Biol. 7, 62–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, J. Hair loss in women. N. Engl. J. Med. 357, 1620–1630 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Strumia, R. Eating disorders and the skin. Clin. Dermatol. 31, 80–85 (2013).

    Article  PubMed  Google Scholar 

  • Guo, E. L. & Katta, R. Diet and hair loss: effects of nutrient deficiency and supplement use. Dermatol. Pract. Concept. 7, 1–10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Morinaga, H. et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature 595, 266–271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paatela, E., Munson, D. & Kikyo, N. Circadian regulation in tissue regeneration. Int. J. Mol. Sci. 20, 2263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby, C. L., Major, R. J. & Hinrichsen, R. D. Regulation of tissue regeneration by the circadian clock. Eur. J. Neurosci. 53, 3576–3597 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Tanioka, M. et al. Molecular clocks in mouse skin. J. Invest. Dermatol. 129, 1225–1231 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Akashi, M. et al. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc. Natl Acad. Sci. USA 107, 15643–15648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nuaimi, Y. et al. A meeting of two chronobiological systems: circadian proteins period1 and BMAL1 modulate the human hair cycle clock. J. Invest. Dermatol. 134, 610–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Janich, P. et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480, 209–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lin, K. K. et al. Circadian clock genes contribute to the regulation of hair follicle cycling. PLOS Genet. 5, e1000573 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyfman, M. et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc. Natl Acad. Sci. USA 109, 11758–11763 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plikus, M. V. et al. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc. Natl Acad. Sci. USA 110, E2106–E2115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • COMAISH, S. Autoradiographic studies of hair groawth in various dermatoses: investigation of a possible circadian rhythm in human hair growth. Br. J. Dermatol. 81, 283–288 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W. & Steinhoff, M. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol. Rev. 86, 1309–1379 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Glatte, P., Buchmann, S. J., Hijazi, M. M., Illigens, B. M.-W. & Siepmann, T. Architecture of the cutaneous autonomic nervous system. Front. Neurol. 10, 970 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L. et al. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147, 1615–1627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, L. et al. Genetic identification of an expansive mechanoreceptor sensitive to skin stroking. Cell 163, 1783–1795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlan, A. et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat. Neurosci. 19, 1331–1340 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, S. M.-Y. et al. External light activates hair follicle stem cells through eyes via an ipRGC–SCN–sympathetic neural pathway. Proc. Natl Acad. Sci. USA 115, E6880–E6889 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet, A., Goodell, M. A. & Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogrodnik, M. & Gladyshev, V. N. The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. Nat. Aging 3, 766–775 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Colavincenzo, M. L. & Granstein, R. D. Stress and the skin: a meeting report of the weill cornell symposium on the science of dermatology. J. Invest. Dermatol. 126, 2560–2561 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Sawaya, M. E. & Hordinsky, M. K. glucocorticoid regulation of hair growth in alopecia areata. J. Invest. Dermatol. 104, 30 (1995).

    Article  Google Scholar 

  • Jang, H., Jo, Y., Lee, J. H. & Choi, S. Aging of hair follicle stem cells and their niches. BMB Rep. 56, 2–9 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Steptoe, A. & Kivimäki, M. Stress and cardiovascular disease. Nat. Rev. Cardiol. 9, 360–370 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Qin, H.-Y., Cheng, C.-W., Tang, X.-D. & Bian, Z.-X. Impact of psychological stress on irritable bowel syndrome. World J. Gastroenterol. 20, 14126–14131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, S. L., Miller, G. E., Brehm, J. M. & Celedón, J. C. Stress and asthma: novel insights on genetic, epigenetic and immunologic mechanisms. J. Allergy Clin. Immunol. 134, 1009–1015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarini, A. A. & Nobbe, S. Marie Antoinette syndrome. Arch. Dermatol. 145, 656–656 (2009).

    Article  PubMed  Google Scholar 

  • Arck, P. C., Slominski, A., Theoharides, T. C., Peters, E. M. J. & Paus, R. Neuroimmunology of stress: skin takes center stage. J. Invest. Dermatol. 126, 1697–1704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condamina, M. et al. Factors associated with perceived stress in patients with vitiligo in the ComPaRe e-cohort. J. Am. Acad. Dermatol. 86, 696–698 (2022).

    Article  PubMed  Google Scholar 

  • Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbani, P. et al. Coordinated activation of wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145, 941–955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachmin, I. et al. Stress-associated ectopic differentiation of melanocyte stem cells and ORS amelanotic melanocytes in an ex vivo human hair follicle model. Exp. Dermatol. 30, 578–587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner, A. B. Gray hair and sympathectomy. Report of a case. Arch. Dermatol. 93, 235–236 (1966).

    Article  CAS  PubMed  Google Scholar 

  • Ortonne, J. P., Thivolet, J. & Guillet, R. Graying of hair with age and sympathectomy. Arch. Dermatol. 118, 876–877 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Flores, A., Saeb-Lima, M. & Cassarino, D. S. Histopathology of aging of the hair follicle. J. Cutan. Pathol. 46, 508–519 (2019).

    Article  PubMed  Google Scholar 

  • Williams, R., Pawlus, A. D. & Thornton, M. J. Getting under the skin of hair aging: the impact of the hair follicle environment. Exp. Dermatol. 29, 588–597 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, E. K., Granter, S. R. & Fisher, D. E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Keyes, B. E. & Fuchs, E. Stem cells: aging and transcriptional fingerprints. J. Cell Biol. 217, 79–92 (2017).

    Article  PubMed  Google Scholar 

  • Zhang, S. & Duan, E. Fighting against skin aging. Cell Transpl. 27, 729–738 (2018).

    Article  Google Scholar 

  • Doles, J., Storer, M., Cozzuto, L., Roma, G. & Keyes, W. M. Age-associated inflammation inhibits epidermal stem cell function. Genes. Dev. 26, 2144–2153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C. et al. Escape of hair follicle stem cells causes stem cell exhaustion during aging. Nat. Aging 1, 889–903 (2021).

    Article  PubMed  Google Scholar 

  • Lay, K., Kume, T. & Fuchs, E. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc. Natl Acad. Sci. USA 113, E1506–E1515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G. et al. SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J. 39, e104365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koester, J. et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat. Cell Biol. 23, 771–781 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Branchet, M. C., Boisnic, S., Frances, C., Lesty, C. & Robert, L. Morphometric analysis of dermal collagen fibers in normal human skin as a function of age. Arch. Gerontol. Geriatr. 13, 1–14 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Farage, M. A., Miller, K. W., Elsner, P. & Maibach, H. I. Characteristics of the aging skin. Adv. Wound Care 2, 5–10 (2013).

    Article  Google Scholar 

  • Duncan, K. O. & Leffell, D. J. Preoperative assessment of the elderly patient. Dermatol. Clin. 15, 583–593 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175, 1575–1590.e22 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Mine, S., Fortunel, N. O., Pageon, H. & Asselineau, D. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS ONE 3, e4066 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin, W. et al. Dysfunction of hair follicle mesenchymal progenitors contributes to age-associated hair loss. Dev. Cell 53, 185–198.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, R. S. et al. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124, 1027–1036 (2014).

    Article  CAS  Google Scholar 

  • Liu, Z. et al. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. Nat. Immunol. 23, 1086–1097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimura, S. et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8, 177–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.-Y. et al. NFIB is a governor of epithelial–melanocyte stem cell behaviour in a shared niche. Nature 495, 98–102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Z. et al. Hair follicle stem cells regulate retinoid metabolism to maintain the self-renewal niche for melanocyte stem cells. eLife 9, e52712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Q. et al. Dedifferentiation maintains melanocyte stem cells in a dynamic niche. Nature 616, 774–782 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geueke, A. et al. The anti-apoptotic Bcl-2 protein regulates hair follicle stem cell function. EMBO Rep. 22, e52301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rognoni, E. & Watt, F. M. Skin cell heterogeneity in development, wound healing, and cancer. Trends Cell Biol. 28, 709–722 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sen, C. K. et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair. Regen. 17, 763–771 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinkevich, Y. et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, D. et al. Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring. Nat. Cell Biol. 20, 422–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Correa-Gallegos, D. et al. Patch repair of deep wounds by mobilized fascia. Nature 576, 287–292 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Juarez, C. F. et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat. Commun. 10, 650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascharak, S. et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 372, eaba2374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q. et al. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. eLife 6, e22772 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Z. et al. Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration. Cell Stem Cell 23, 487–500.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z. et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature 601, 118–124 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Picardo, M. et al. Vitiligo. Nat. Rev. Dis. Prim. 1, 15011 (2015).

    Article  PubMed  Google Scholar