Ethical approval
All the experimental protocols were approved by Institute biosafety committee of PGIFER (Postgraduate Institute of Fisheries Education and Research), Kamdhenu University, Gandhinagar, Gujarat. The guidelines of the CPCSEA (Committee for the Purpose of Control and Supervision of Experiments on Animals, Ministry of Environment and Forests (Animal Welfare Division) on care and use of animals and ARRIVE2.0 (Animal Research: Reporting of In Vivo Experiments) in scientific research were followed during the experiment.
Sample collection and library preparation
The salinity stress experiment was conducted at Postgraduate Institute of Fisheries Education and Research (PGIFER), Kamdhenu University, Himmatnagar, Gujarat. Fingerlings (>10 g) were acquired from the State Fisheries Department Fish Hatchery, Gujarat. They were kept in 150-liter tanks with continuous aeration at 27 ± 5 °C. The fish were fed at 5% of the body weight till the end of the experiment, and 25% water was replaced each day, along with feces, to keep the tanks clean. The fingerlings were randomly split into control and salinity treatment groups. The control group was constantly maintained at 0ppt whereas in the treatment group the salinity was gradually raised (1ppt/day) to 2, 4, 6 and 8 ppt salinity by adding (55 ppt) of Red Sea Coral Pro Salt (Red Sea, USA). Each week the fish were gradually transferred to increased salinity and 3 fish were randomly euthanized and tissue samples were collected from the control and treatment groups. The samples were stored at −80 °C in RNAlater® until further use. The total RNA was extracted from the kidney tissues using RNeasy Plus Mini Kit (Qiagen, Germany). The integrity and quality of RNA were assessed with Agilent 2100 Bioanalyzer system (Agilent technologies, Ca) and Qubit 4 Fluorometer (Thermo Fisher Scientific, United States). The cDNA libraries were prepared by TruSeq Stranded Total RNA Library Prep Kit (Illumina, Ca) after removing ribosomal RNA with RiboMinus™ Eukaryote System v2 (Thermo Fisher, Ma). The samples were sequenced on an Illumina MiSeq and NovaSeq 6000 platform with paired-end forward and reverse reads.
Data processing and expression analysis
A total of 10.25 Gbps data was generated and processed for a quality check using FastQC (v0.11.9). The reads were aligned with the NCBI reference genome Rohu (Labeo rohita) (GenBank assembly accession GCA_004120215.1 v1) using segemehl (v0.2.0-418), and expression levels of mRNAs were computed with featureCounts (v2.0.1). The expression matrix of mRNA genes from individual salinities was used in the DESeq 2 package for differential expression analysis. The significant DEGs were considered with p-value ≤ 0.05 | log2FoldChange ≥0.5 for the enrichment and pathway analysis. The data was visualized using the ggplot2 package for each salinity-treated group. The detailed results of expression profile of transcriptome of kidney and significant mRNAs can be found in our previously published study18.
Prediction of putative lncRNAs
For identification of lncRNAs, transcripts were de-novo assembled with Cufflinks version (v2.2.1) using aligned bam files from individual samples. Cuffmerge was used to obtain a combined assembly, which was then processed through FEELnc pipeline (v.0.2.1) (https://github.com/tderrien/FEELnc)19. FEELncfilter was initially utilized to filter out transcripts less than 200 bp, including single-exon transcripts. Next, FEELnccodpot was used to evaluate the coding potential of each transcript based on the length of ORF, sequence bias, and transcript length to differentiate lncRNA from mRNA. Of 37,462 transcripts, 4,170 potential candidate lncRNAs were identified from the FEELnc program. Subsequently, FEELncclassifier was used to classify the identified lncRNA into genic, intergenic, containing, same strand, convergent, divergent, overlapping, and nested categories (Fig. 2). Finally, CPC2 (v0.1) (http://cpc2.gao-lab.org/) was utilized as an additional assessment method for the identification of the coding potential of transcripts, which uses a support vector machine (svm)20, 1,447 non-coding lncRNA were finalized, and an input matrix was prepared with featureCounts using GTF file of lncRNA for differential expression analysis using DESeq2 package in R software (v 4.2.3). In the 2, 4, 6, and 8ppt salinity groups, 170, 118, 99, and 269 differentially expressed lncRNA with p-value ≤ 0.05 & Log2FoldChange ≥0.5, respectively (Figs. 3, 4 and Figshare Dataset 121).
Prediction of putative miRNAs
To identify miRNAs, fasta file was prepared from raw fastq using the fastx toolkit (https://github.com/agordon/fastx_toolkit). The collapsed reads function from the mirdeep2 package was implemented to identify miRNA sequence whose length varies between (16 to 24 bp) which is shorter than the sequence read length. The standalone BLASTn tool was implemented for the identification of putative mature miRNA sequences obtained from the miRbase database (https://www.mirbase.org), for teleostei species with E-value (1E-1) and percent identity ≥ 95 as a cut-off. The Differential expression analysis of miRNAs was performed using EdgeR package from Bioconductor (v.3.40.2)22. A total of 120, 118, 99, and 124 differentially expressed miRNAs with p-value ≤ 0.05 and log2FoldChange ≥0.5 were considered (Figs. 3, 4 and Figshare Dataset 221).
Identification of target mRNAs for lncRNA and miRNA
LncRNAs competitively bind microRNAs to alter the expression of specific mRNAs23. The targeted mRNAs were predicted for miRNAs and lncRNAs using miRanda (v3.3a) (http://www.microrna.org/microrna/home.do)24, which uses scoring matrix for the individual alignment for detection of potential target sites in coding sequences, with score cutoff ≥ 145 and energy ≤ −1025 to predict lncRNA-miRNA pairs and miRNA-lncRNA pairs. A total of 953, 863, 494 and 1983 lncRNA-miRNA pairs and 766, 869, 532, and 1226 miRNA-mRNA pairs were identified in 2, 4, 6, and 8ppt salinity treated groups, respectively (Figshare Dataset 321). Correlation between lncRNA and miRNA was calculated using corr.test() function by R software. LncRNA-miRNA pairs using Pearson correlation coefficients (PCC) with | r | ≥ 0.94 and p-value ≤ 0.05 were selected. A total of 10,999; 20,341; 7,575; 36,919 significant lncRNA-mRNA pairs were identified in 2, 4, 6, and 8ppt groups respectively. These lncRNA-mRNA pairs include 159 lncRNAs and 152 mRNAs, 118 lncRNAs and 351 mRNAs, 99 lncRNAs and 155 mRNAs, and 268 lncRNAs and 279 mRNAs in 2, 4, 6, and 8ppt groups respectively (Figshare Dataset 421).
Construction of ceRNA network
Among the predicted, lncRNA-miRNA and miRNA-mRNA pairs, under the stipulation that both lncRNA and mRNA are concurrently targeted by the same miRNA and display a negative co-expression. Those pairs were considered to construct lncRNA-miRNA-mRNA network, and the network topology was graphically depicted using the Cytoscape software (v3.9.1) for visualization and subsequent analysis. According to the ceRNA hypothesis, ceRNAs (lncRNA and mRNA) have positive correlation expression by competing for the same miRNA, which is negatively correlated. Thus, two different ceRNA networks were constructed for each treatment group consisting of, i.e., (1.) up-regulated lncRNAs and mRNAs, and down-regulated miRNAs (A* ceRNA network) and (2.) down-regulated lncRNAs and mRNAs, and up-regulated miRNAs (B* ceRNA network). Both positive and negative correlation pairs were identified based on log2FoldChange values. In the 2ppt treatment group, the A* integrated network contains 131 lncRNA-miRNA-mRNA pairs which include 64 lncRNAs, 36 miRNAs, and 31mRNAs and the B* integrated network contains 83 lncRNA-miRNA-mRNA pairs, including 41 lncRNAs 16 miRNAs and 26mRNAs (Fig. 5 and Figshare Dataset 521).
In 4ppt, A* network contains 163 lncRNA-miRNA-mRNA pairs, including 43 lncRNAs, 40 miRNAs, and 80 mRNAs. B* network includes 191 lncRNA-miRNA-mRNA pairs which include 53 lncRNAs, 60 miRNAs, and 78 mRNAs (Fig. 6 and Figshare Dataset 5 25). In 6ppt, A* network includes 103 lncRNA-miRNA-mRNA pairs which include 43 lncRNAs, 38 miRNAs, and 22 mRNAs. B* network contains 105 lncRNA-miRNA-mRNA pairs with 42 lncRNAs, 33 miRNAs, and 30 mRNAs (Fig. 7 and Figshare Dataset 5 25). In 8ppt, A* network contains 192 lncRNA-miRNA-mRNA pairs which include 103 lncRNAs, 23 miRNAs, and 66 mRNAs. B* network contains 174 lncRNA-miRNA-mRNA pairs which include 111 lncRNAs, 24 miRNAs, and 39 mRNAs (Fig. 8 and Figshare Dataset 5 25).
Functional enrichment of the ceRNA network
The functional enrichment and pathway analysis was performed using DAVID (https://david.ncifcrf.gov/). The significantly enriched terms classified in BP, CC, MF, and KEGG pathways were considered for identifying differentially expressed genes involved in salinity stress (Fig. 9 and Figshare Dataset 621).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41597-024-03056-y