Liver transcriptomics-metabolomics integration reveals biological pathways associated with fetal programming in beef cattle

  • Ando, Y. et al. Impact of maternal fructose intake on liver stem/progenitor cells in offspring: insights into developmental origins of health and disease. Life Sci. 336, 122315 (2024).

    PubMed 

    Google Scholar
     

  • Neto, J. G. O. et al. Effect of gestational Fish Oil supplementation on liver metabolism and mitochondria of male and female rat offspring programmed by maternal high-Fat Diet. Mol. Nutr. Food Res. 67, 2200479 (2023).


    Google Scholar
     

  • Peng, H. et al. Offspring NAFLD liver phospholipid profiles are differentially programmed by maternal high-fat diet and maternal one carbon supplement. J. Nutr. Biochem. 111, 109187 (2023).

    PubMed 

    Google Scholar
     

  • Stalker, M. J. Pathologic Basis of Veterinary Disease, 4th Ed. The Canadian Veterinary Journal vol. 48 Canadian Veterinary Medical Association, St. Louis, Missouri, (2007).

  • Alexandre, P. A. et al. Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genom. 16, 1–13 (2015).


    Google Scholar
     

  • Nolte, W. et al. Identification and Annotation of Potential Function of Regulatory Antisense Long non-coding RNAs related to feed efficiency in Bos taurus bulls. Int. J. Mol. Sci. 2020. 21, 3292 (2020).


    Google Scholar
     

  • Maloney, C. A. & Rees, W. D. Gene-nutrient interactions during fetal development. Reproduction. 130, 401–410 (2005).

    PubMed 

    Google Scholar
     

  • Prezotto, L. D. et al. Nutrient restriction and realimentation in beef cows during early and mid-gestation and maternal and fetal hepatic and small intestinal in vitro oxygen consumption. animal 10, 829–837 (2016).

  • Smith, B. I. et al. Mid- to late-gestational maternal nutrient restriction followed by realimentation alters development and lipid composition of liver and skeletal muscles in ovine fetuses. J. Anim. Sci. 99, (2021).

  • Polizel, G. H. G. et al. Effects of different prenatal Nutrition strategies on the liver metabolome of bulls and its correlation with body and Liver Weight. Metabolites. 12, 441 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Z. C. & Chen, Y. Transcriptomics: advances and approaches. Sci. China Life Sci. 56, 960–967 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Alawiye, T. T. & Babalola, O. O. Metabolomics: current application and prospects in crop production. Biol. (Bratisl). 76, 227–239 (2021).


    Google Scholar
     

  • Menyhárt, O. & Győrffy, B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 19, 949–960 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Misra, B. B., Langefeld, C., Olivier, M. & Cox, L. A. Integrated omics: tools, advances and future approaches. J. Mol. Endocrinol. 62, R21–R45 (2019).


    Google Scholar
     

  • Flores, J. E. et al. Missing data in multi-omics integration: recent advances through artificial intelligence. Front. Artif. Intell. 6, 1098308 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schalch Junior, F. J. et al. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 12, 347 (2022).

  • Fernandes, A. C. et al. Fetal programming and its effects on Meat Quality of Nellore Bulls. Veterinary Sci. 2023. 10, Page 672 (10), 672 (2023).


    Google Scholar
     

  • Zukunft, S. et al. High-throughput extraction and quantification method for targeted metabolomics in murine tissues. Metabolomics. 14, 1–12 (2018).


    Google Scholar
     

  • Zhbannikov, I. Y., Hunter, S. S., Foster, J. A., Settles, M. L. & Seqyclean A pipeline for high-throughput sequence data preprocessing. ACM-BCB 2017 – Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 17, 407–416 (2017).

  • Dobin, A. et al. Ultrafast universal RNA-seq aligner. Bioinf. 29. STAR, 15–21 (2013).


    Google Scholar
     

  • Langfelder, P. & Horvath, S. W. G. C. N. A. An R package for weighted correlation network analysis. BMC Bioinform. 9, 1–13 (2008).


    Google Scholar
     

  • Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the dynamic Tree Cut package for R. Bioinformatics. 24, 719–720 (2008).

    PubMed 

    Google Scholar
     

  • Pei, G., Chen, L. & Zhang, W. WGCNA Application to Proteomic and Metabolomic Data Analysis. Methods Enzymol. 585, 135–158 (2017).

    PubMed 

    Google Scholar
     

  • Long, N. M., Prado-Cooper, M. J., Krehbiel, C. R., Desilva, U. & Wettemann, R. P. Effects of nutrient restriction of bovine dams during early gestation on postnatal growth, carcass and organ characteristics, and gene expression in adipose tissue and muscle. J. Anim. Sci. 88, 3251–3261 (2010).

    PubMed 

    Google Scholar
     

  • Diniz, W. J. S. et al. Cerebrum, liver, and muscle regulatory networks uncover maternal nutrition effects in developmental programming of beef cattle during early pregnancy. Scientific Reports 2021 11:1 11, 1–14 (2021).

  • Crouse, M. S. et al. Moderate nutrient restriction of beef heifers alters expression of genes associated with tissue metabolism, accretion, and function in fetal liver, muscle, and cerebrum by day 50 of gestation. Transl Anim. Sci. 3, 855–866 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devos, J. et al. Genetic potential for residual feed intake and diet fed during early- to mid-gestation influences post-natal DNA methylation of imprinted genes in muscle and liver tissues in beef cattle. J. Anim. Sci. 99, (2021).

  • Schober, P. & Schwarte, L. A. Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 126, 1763–1768 (2018).

    PubMed 

    Google Scholar
     

  • Yoo, B. H., Park, C. H., Kim, H. J., Kang, D. S. & Bae, C. D. CKAP2 is necessary to ensure the faithful spindle bipolarity in a dividing diploid hepatocyte. Biochem. Biophys. Res. Commun. 473, 886–893 (2016).

    PubMed 

    Google Scholar
     

  • Xing, S. et al. Time Course Transcriptomic Study reveals the Gene Regulation during Liver Development and the correlation with abdominal Fat Weight in Chicken. Front. Genet. 12, 723519 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, S. M. et al. The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Res. 36, 168–178 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • She, R., Luo, J. & Weissman, J. S. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Res. 51, 6355–6369 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauchart, D., Gruffat, D. & Durand, D. Lipid absorption and hepatic metabolism in ruminants. Proc. Nutr. Soc. 55, 39–47 (1996).

    PubMed 

    Google Scholar
     

  • Harvey, K. M. et al. Supplementing Trace minerals to Beef cows during Gestation to enhance productive and health responses of the offspring. Anim. 2021. 11, 1159 (2021).


    Google Scholar
     

  • Marques, A. H., O’Connor, T. G., Roth, C. & Susser, E. Bjørke-Monsen, A. L. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front. Neurosci. 7, 53680 (2013).


    Google Scholar
     

  • Noya, A., Casasús, I., Ferrer, J. & Sanz, A. Long-Term effects of maternal subnutrition in early pregnancy on cow-calf performance, immunological and physiological profiles during the Next Lactation. Anim. 2019. 9, 936 (2019).


    Google Scholar
     

  • Moriel, P. et al. Maternal supplementation of energy and protein, but not methionine hydroxy analog, enhanced postnatal growth and response to vaccination in Bos indicus-influenced beef offspring. J. Anim. Sci. 98, 1–12 (2020).


    Google Scholar
     

  • Stalker, L. A., Adams, D. C., Klopfenstein, T. J., Feuz, D. M. & Funston, R. N. Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance. J. Anim. Sci. 84, 2582–2589 (2006).

    PubMed 

    Google Scholar
     

  • Larson, D. M., Martin, J. L., Adams, D. C. & Funston, R. N. Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. J. Anim. Sci. 87, 1147–1155 (2009).

    PubMed 

    Google Scholar
     

  • Hough, R. L., McCarthy, F. D., Kent, H. D., Eversole, D. E. & Wahlberg, M. L. Influence of nutritional restriction during late gestation on production measures and passive immunity in beef cattle. J. Anim. Sci. 68, 2622–2627 (1990).

    PubMed 

    Google Scholar
     

  • Harper, A. E., Miller, R. H. & Block, K. P. BRANCHED-CHAIN AMINO ACID METABOLISM. Ann. Rev. Nutr. 4, 409–454 (1984).


    Google Scholar
     

  • Deyang Yu, A. et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell. Metab. 33, 905–922e6 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key player in Metal-Induced oxidative stress defenses. Int. J. Mol. Sci. 2012. 13, Pages 3145–3175 (13), 3145–3175 (2012).


    Google Scholar
     

  • Vairetti, M. et al. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants Vol. 10, Page 364 10, 364 (2021). (2021).

  • Hayashi, Y. et al. Ablation of fatty acid desaturase 2 (FADS2) exacerbates hepatic triacylglycerol and cholesterol accumulation in polyunsaturated fatty acid-depleted mice. FEBS Lett. 595, 1920–1932 (2021).

    PubMed 

    Google Scholar
     

  • Roe, C. R. et al. 2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation. J. Clin. Invest. 85, 1703–1707 (1990).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porcuna, J., Mínguez-Martínez, J. & Ricote, M. The PPARα and PPARγ Epigenetic Landscape in Cancer and Immune and Metabolic disorders. Int. J. Mol. Sci. 22, (2021).

  • Ramos, A. & Camargo, F. D. The Hippo signaling pathway and stem cell biology. Trends Cell. Biol. 22, 339–346 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    PubMed 

    Google Scholar
     

  • Yimlamai, D. et al. Hippo Pathway Activity influences Liver Cell Fate. Cell. 157, 1324–1338 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubourg, C., Toutain, B., Gall, L., Le Treut, J. Y., Guenet, L. & A. & Promoter analysis of the human translation termination factor 1 gene. Gene. 316, 91–101 (2003).

    PubMed 

    Google Scholar
     

  • Graille, M. et al. Methylation of class I translation termination factors: structural and functional aspects. Biochimie. 94, 1533–1543 (2012).

    PubMed 

    Google Scholar
     

  • O’Keefe, T. L., Williams, G. T., Davies, S. L. & Neuberger, M. S. Hyperresponsive B cells in CD22-deficient mice. Sci. (1979). 274, 798–801 (1996).


    Google Scholar
     

  • Sjoberg, E. R., Powell, L. D., Klein, A. & Varki, A. Natural ligands of the B cell adhesion molecule CD22 beta can be masked by 9-O-acetylation of sialic acids. J. Cell Biol. 126, 549–562 (1994).

    PubMed 

    Google Scholar
     

  • Cariappa, A. et al. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J. Exp. Med. 206, 125–138 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhagavan, N. V., Ha, C. E. & Lipids, I. I. Academic Press,. in Essentials of Medical Biochemistry 299–320 doi: (2015). https://doi.org/10.1016/b978-0-12-416687-5.00017-8

  • Van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: Where they are and how they behave. Nature Reviews Molecular Cell Biology vol. 9 112–124 Preprint at (2008). https://doi.org/10.1038/nrm2330

  • Edidin, M. Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell. Biol. 4, 414–418 (2003).

    PubMed 

    Google Scholar
     

  • Leskova, G. F., Kaplun, A. P., Bezrukov, D. A. & Lvovsky, A. I. Effect of Phosphatidylcholine Nanosomes on Phospholipid Composition of the plasma membranes in liver cells and blood serum in experimental atherosclerosis. Bull. Exp. Biol. Med. 170, 181–184 (2020).

    PubMed 

    Google Scholar
     

  • Jungst, D., Lang, T., Huber, P., Lange, V. & Paumgartner, G. Effect of phospholipids and bile acids on cholesterol nucleation time and vesicular/micellar cholesterol in gallbladder bile of patients with cholesterol stones. J. Lipid Res. 34, 1457–1464 (1993).

    PubMed 

    Google Scholar
     

  • Zeisel, S. H. & Da Costa, K. A. Choline: an essential nutrient for public health. Nutr. Rev. 67, 615–623 (2009).

    PubMed 

    Google Scholar
     

  • Mossmann, D., Park, S. & Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews Cancer 2018 18:12 18, 744–757 (2018).

  • Chen, C. L. et al. Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells. Nature Communications 12, 1–14 (2021). (2021).

  • Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 167, 829–842e13 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu, J. et al. Oral collagen-derived dipeptides, prolyl-hydroxyproline and hydroxyprolyl-glycine, ameliorate skin barrier dysfunction and alter gene expression profiles in the skin. Biochem. Biophys. Res. Commun. 456, 626–630 (2015).

    PubMed 

    Google Scholar
     

  • Kaul, S., Sharma, S. S. & Mehta, I. K. Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids. 34, 315–320 (2008).

    PubMed 

    Google Scholar
     

  • Tzavlaki, K., Moustakas, A. & TGF-β Signaling Biomolecules 2020, Vol. 10, 487 (2020).


    Google Scholar
     

  • Berton, M. P. et al. Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genom. 17, 1–16 (2016).


    Google Scholar
     

  • Cánovas, A. et al. Early postmortem gene expression and its relationship to composition and quality traits in pig Longissimus dorsi muscle. J. Anim. Sci. 90, 3325–3336 (2012).

    PubMed 

    Google Scholar
     

  • Mehla, K. et al. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle. Gene. 533, 500–507 (2014).

    PubMed 

    Google Scholar
     

  • Yang, G. et al. Proteomic analysis reveals the effects of different dietary protein levels on growth and development of Jersey-Yak. Animals. 14, 406 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibamori, K. et al. Maternal diet during gestation affect prostatic tissue component in SHR/Izm offspring. Prostate. 84, 303–314 (2024).

    PubMed 

    Google Scholar
     

  • Holmes, R. P. & Assimos, D. G. GLYOXYLATE SYNTHESIS, AND ITS MODULATION AND INFLUENCE ON OXALATE SYNTHESIS. J. Urol. 160, 1617–1624 (1998).

    PubMed 

    Google Scholar
     

  • Dean, J. T. et al. Cell metabolism resistance to Diet-Induced obesity in mice with synthetic glyoxylate shunt. Cell. Metab. 9, 525–536 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eom, J. S. et al. Metabolomic and transcriptomic study to understand changes in metabolic and immune responses in steers under heat stress. Anim. Nutr. 11, 87–101 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, M. et al. The exploration of fetal growth restriction based on metabolomics: a systematic review. Metabolites. 12, 860 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muroya, S. et al. Maternal undernutrition during pregnancy alters amino acid metabolism and gene expression associated with energy metabolism and angiogenesis in fetal calf muscle. Metabolites. 11, 582 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohtake, Y. et al. Effect of retinoic acid on transglutaminase and ornithine decarboxylase activities during liver regeneration. Cell. Biochem. Funct. 26, 359–365 (2008).

    PubMed 

    Google Scholar
     

  • Yuhong, L., Zhengzhong, B., Feng, T., Quanyu, Y. & Ge, R. L. L-arginine attenuates hypobaric Hypoxia-Induced increase in Ornithine decarboxylase 1. Wilderness Environ. Med. 28, 285–290 (2017).

    PubMed 

    Google Scholar
     

  • Al Barashdi, M. A., Ali, A., McMullin, M. F. & Mills, K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J. Clin. Pathol. 74, 548–552 (2021).

    PubMed 

    Google Scholar
     

  • Ogawa, T. et al. Seeking genes responsible for developmental origins of health and disease from the fetal mouse liver following maternal food restriction. Congenit Anom. (Kyoto). 54, 195–219 (2014).

    PubMed 

    Google Scholar
     

  • Bai, X., Moraes, T. F. & Reithmeier, R. A. F. Structural biology of solute carrier (SLC) membrane transport proteins. Mol. Membr. Biol. 34, 1–32 (2017).

    PubMed 

    Google Scholar
     

  • Daigle, N. D. et al. Molecular characterization of a human cation-Cl – cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J. Cell. Physiol. 220, 680–689 (2009).

    PubMed 

    Google Scholar
     

  • Ghaffari, M. H., Sadri, H., Trakooljul, N., Koch, C. & Sauerwein, H. Liver transcriptome profiles of dairy cows with different serum metabotypes. J. Dairy. Sci. 107, 1751–1765 (2024).

    PubMed 

    Google Scholar
     

  • Njålsson, R. Glutathione synthetase deficiency. Cell. Mol. Life Sci. 62, 1938–1945 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polizel, G. H. G. et al. Evaluation of reproductive traits and the effect of nutrigenetics on bulls submitted to fetal programming. Livest. Sci. 247, 104487 (2021).


    Google Scholar