Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).
Li, L., Scheiger, J. M. & Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 31, 1807333 (2019).
Chatani, S., J. Kloxin, C. & Bowman, N. C. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym. Chem. 5, 2187–2201 (2014).
Hill-West, J. L., Chowdhury, S. M., Slepian, M. J. & Hubbell, J. A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc. Natl Acad. Sci. USA 91, 5967–5971 (1994).
West, J. L. & Hubbell, J. A. Photopolymerized hydrogel materials for drug delivery applications. React. Polym. 25, 139–147 (1995).
Van Den Bulcke, A. I. et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–38 (2000).
Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).
Benton, J. A., DeForest, C. A., Vivekanandan, V. & Anseth, K. S. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15, 3221–3230 (2009).
Burdick, J. A., Chung, C., Jia, X., Randolph, M. A. & Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6, 386–391 (2005).
Park, Y. D., Tirelli, N. & Hubbell, J. A. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials 24, 893–900 (2003).
Brinkman, W. T., Nagapudi, K., Thomas, B. S. & Chaikof, E. L. Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function. Biomacromolecules 4, 890–895 (2003).
Kim, S. H. & Chu, C. C. Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM. J. Biomed. Mater. Res. 49, 517–527 (2000).
<a data-track="click||click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4636(20000315)49:43.0.CO;2-8″ data-track-item_id=”10.1002/(SICI)1097-4636(20000315)49:43.0.CO;2-8″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4636%2820000315%2949%3A4%3C517%3A%3AAID-JBM10%3E3.0.CO%3B2-8″ aria-label=”Article reference 12″ data-doi=”10.1002/(SICI)1097-4636(20000315)49:43.0.CO;2-8″>Article
Google Scholar
Elbert, D. L. & Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2, 430–441 (2001).
Cramer, N. B. & Bowman, C. N. Kinetics of thiol–ene and thiol–acrylate photopolymerizations with real-time fourier transform infrared. J. Polym. Sci. A Polym. Chem. 39, 3311–3319 (2001).
Salinas, C. N. & Anseth, K. S. Mixed mode thiol−acrylate photopolymerizations for the synthesis of PEG−peptide hydrogels. Macromolecules 41, 6019–6026 (2008).
Günay, K. A. et al. Photo-expansion microscopy enables super-resolution imaging of cells embedded in 3D hydrogels. Nat. Mater. 22, 777–785 (2023).
Tibbitt, M. W., Kloxin, A. M., Sawicki, L. A. & Anseth, K. S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46, 2785–2792 (2013).
Lin, C.-C., Raza, A. & Shih, H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32, 9685–9695 (2011).
Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).
Aimetti, A. A., Machen, A. J. & Anseth, K. S. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30, 6048–6054 (2009).
Mũnoz, Z., Shih, H. & Lin, C.-C. Gelatin hydrogels formed by orthogonal thiol–norbornene photochemistry for cell encapsulation. Biomater. Sci. 2, 1063–1072 (2014).
Soliman, B. G. et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv. Healthc. Mater. 11, 2101873 (2022).
Gramlich, W. M., Kim, I. L. & Burdick, J. A. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34, 9803–9811 (2013).
Yang, K. et al. Photo-crosslinked mono-component type II collagen hydrogel as a matrix to induce chondrogenic differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. B 5, 8707–8718 (2017).
McOscar, T. V. C. & Gramlich, W. M. Hydrogels from norbornene-functionalized carboxymethyl cellulose using a UV-initiated thiol-ene click reaction. Cellulose 25, 6531–6545 (2018).
Shih, H. & Lin, C.-C. Cross-linking and degradation of step-growth hydrogels formed by thiol–ene photoclick chemistry. Biomacromolecules 13, 2003–2012 (2012).
Sawicki, L. A. & Kloxin, A. M. Design of thiol–ene photoclick hydrogels using facile techniques for cell culture applications. Biomater. Sci. 2, 1612–1626 (2014).
DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).
Nelson, B. R. et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv. Mater. https://doi.org/10.1002/adma.202211209 (2023). This article reports the first application of 1,2-dithiolanes as dynamic covalent photocrosslinkers in hydrogel biomaterials, demonstrating the versatility of this chemistry for dynamic stiffening, softening and biomolecule immobilization.
Nelson, B. R. et al. Facile physicochemical reprogramming of PEG-dithiolane microgels. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202302925 (2023).
Fairbanks, B. D. et al. Photoclick chemistry: a bright idea. Chem. Rev. 121, 6915–6990 (2021).
Kharkar, P. M., Rehmann, M. S., Skeens, K. M., Maverakis, E. & Kloxin, A. M. Thiol–ene click hydrogels for therapeutic delivery. ACS Biomater. Sci. Eng. 2, 165–179 (2016).
Chujo, Y., Sada, K. & Saegusa, T. Polyoxazoline having a coumarin moiety as a pendant group. Synthesis and photogelation. Macromolecules 23, 2693–2697 (1990).
Tamate, R. et al. Photo-dimerization induced dynamic viscoelastic changes in ABA triblock copolymer-based hydrogels for 3D cell culture. Chem. Mater. 28, 6401–6408 (2016).
Kabb, C. P., O’Bryan, C. S., Deng, C. C., Angelini, T. E. & Sumerlin, B. S. Photoreversible covalent hydrogels for soft-matter additive manufacturing. ACS Appl. Mater. Interfaces 10, 16793–16801 (2018).
Chen, Y. et al. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proc. Natl Acad. Sci. USA 115, E1391–E1400 (2018).
Zhu, C. N. et al. Reconstructable gradient structures and reprogrammable 3D deformations of hydrogels with coumarin units as the photolabile crosslinks. Adv. Mater. 33, 2008057 (2021).
Inacker, S., Schipplick, L., Kahler, P. & Hampp, N. Upgrading the toolbox: two-photon absorption induced cleavage of coumarin dimers for light-based 4D printing. Macromol. Rapid Commun. 44, 2300217 (2023).
Zheng, Y. et al. PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002).
Günay, K. A. et al. PEG–anthracene hydrogels as an on-demand stiffening matrix to study mechanobiology. Angew. Chem. Int. Ed. 58, 9912–9916 (2019).
Truong, V. X., Li, F. & Forsythe, J. S. Versatile bioorthogonal hydrogel platform by catalyst-free visible light initiated photodimerization of anthracene. ACS Macro Lett. 6, 657–662 (2017).
Silver, J. S. et al. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. Sci. Adv. 7, eabe4501 (2021).
Brown, T. E. et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. J. Am. Chem. Soc. 140, 11585–11588 (2018).
Günay, K. A. et al. Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials 277, 121097 (2021).
Clovis, J. S., Eckell, A., Huisgen, R. & Sustmann, R. 1.3-Dipolare Cycloadditionen, XXV. Der Nachweis des freien Diphenylnitrilimins als Zwischenstufe bei Cycloadditionen. Chem. Ber. 100, 60–70 (1967).
Wang, Y., Hu, W. J., Song, W., Lim, R. K. V. & Lin, Q. Discovery of long-wavelength photoactivatable diaryltetrazoles for bioorthogonal 1,3-dipolar cycloaddition reactions. Org. Lett. 10, 3725–3728 (2008).
Dietrich, M. et al. Photoclickable surfaces for profluorescent covalent polymer coatings. Adv. Funct. Mater. 22, 304–312 (2012).
Wang, Y., Song, W., Hu, W. J. & Lin, Q. Fast alkene functionalization in vivo by photoclick chemistry: HOMO lifting of nitrile imine dipoles. Angew. Chem. Int. Ed. 48, 5330–5333 (2009).
Yu, Z., Ohulchanskyy, T. Y., An, P., Prasad, P. N. & Lin, Q. Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells. J. Am. Chem. Soc. 135, 16766–16769 (2013).
Lederhose, P. et al. Near-infrared photoinduced coupling reactions assisted by upconversion nanoparticles. Angew. Chem. Int. Ed. 55, 12195–12199 (2016).
Liu, H. et al. A nucleoside derivative 5-vinyluridine (VrU) for imaging RNA in cells and animals. Bioconjugate Chem. 30, 2958–2966 (2019).
Wu, Y., Guo, G., Zheng, J., Xing, D. & Zhang, T. Fluorogenic “photoclick” labeling and imaging of DNA with coumarin-fused tetrazole in vivo. ACS Sens. 4, 44–51 (2019).
Fan, Y., Deng, C., Cheng, R., Meng, F. & Zhong, Z. In situ forming hydrogels via catalyst-free and bioorthogonal “tetrazole–alkene” photo-click chemistry. Biomacromolecules 14, 2814–2821 (2013).
Li, S. et al. Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid canogels for traceable and targeted delivery of cytochrome c to breast tumor in mice. ACS Appl. Mater. Interfaces 8, 21155–21162 (2016).
Truong, V. X., Li, F., Ercole, F. & Forsythe, J. S. Wavelength-selective coupling and decoupling of polymer chains via reversible [2 + 2] photocycloaddition of styrylpyrene for construction of cytocompatible photodynamic hydrogels. ACS Macro Lett. 7, 464–469 (2018).
Marschner, D. E. et al. Visible light [2 + 2] cycloadditions for reversible polymer ligation. Macromolecules 51, 3802–3807 (2018).
Kalayci, K., Frisch, H., Barner-Kowollik, C. & Truong, V. X. Wavelength-dependent stiffening of hydrogel matrices via redshifted [2+2] photocycloadditions. Adv. Funct. Mater. 30, 1908171 (2020).
Kalayci, K., Frisch, H., Truong, V. X. & Barner-Kowollik, C. Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline — controlling photoreactivity by pH. Nat. Commun. 11, 4193 (2020).
Cui, X. et al. Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Adv. Healthc. Mater. 9, 1901667 (2020).
Jeon, E. Y. et al. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials 67, 11–19 (2015).
Partlow, B. P., Applegate, M. B., Omenetto, F. G. & Kaplan, D. L. Dityrosine cross-linking in designing biomaterials. ACS Biomater. Sci. Eng. 2, 2108–2121 (2016).
Atienza-Roca, P. et al. Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomater. Sci. 8, 5005–5019 (2020).
Liu, H., Nguyen, H. D. & Lin, C. Dynamic PEG–peptide hydrogels via visible light and FMN‐induced tyrosine dimerization. Adv. Healthc. Mater. 7, 1800954 (2018).
Batalov, I., Stevens, K. R. & DeForest, C. A. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proc. Natl Acad. Sci. USA 118, e2014194118 (2021).
DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).
Farahani, P. E., Adelmund, S. M., Shadish, J. A. & DeForest, C. A. Photomediated oxime ligation as a bioorthogonal tool for spatiotemporally-controlled hydrogel formation and modification. J. Mater. Chem. B 5, 4435–4442 (2017).
Fitzgerald, E. R., Mineo, A. M., Pryor, M. L. & Buck, M. E. Photomediated post-fabrication modification of azlactone-functionalized gels for the development of hydrogel actuators. Soft Matter 16, 6044–6049 (2020).
Ruskowitz, E. R. et al. Spatiotemporal functional assembly of split protein pairs through a light-activated SpyLigation. Nat. Chem. 15, 694–704 (2023).
Furuta, T., Torigai, H., Sugimoto, M. & Iwamura, M. Photochemical properties of new photolabile cAMP derivatives in a physiological saline solution. J. Org. Chem. 60, 3953–3956 (1995).
Furuta, T. et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc. Natl Acad. Sci. USA 96, 1193–1200 (1999).
Bojtár, M., Kormos, A., Kis-Petik, K., Kellermayer, M. & Kele, P. Green-light activatable, water-soluble red-shifted coumarin photocages. Org. Lett. 21, 9410–9414 (2019).
Rahman, N., Purpura, K. A., Wylie, R. G., Zandstra, P. W. & Shoichet, M. S. The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells. Biomaterials 31, 8262–8270 (2010).
Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).
Wylie, R. G. & Shoichet, M. S. Two-photon micropatterning of amines within an agarose hydrogel. J. Mater. Chem. 18, 2716–2721 (2008).
Bailey, S. J. et al. Design, synthesis, and application of a water-soluble photocage for aqueous cyclopentadiene-based Diels-Alder photoclick chemistry in hydrogels. Angew. Chem. Int. Ed. 62, e202301157 (2023).
Bailey, S. J. et al. Diels–Alder photoclick patterning of extracellular matrix for spatially controlled cell behaviors. Adv. Mater. 35, 2303453 (2023).
Poloukhtine, A. A., Mbua, N. E., Wolfert, M. A., Boons, G.-J. & Popik, V. V. Selective labeling of living cells by a photo-triggered click reaction. J. Am. Chem. Soc. 131, 15769–15776 (2009).
Bjerknes, M., Cheng, H., McNitt, C. D. & Popik, V. V. Facile quenching and spatial patterning of cylooctynes via strain-promoted alkyne–azide cycloaddition of inorganic azides. Bioconjugate Chem. 28, 1560–1565 (2017).
McNitt, C. D., Cheng, H., Ullrich, S., Popik, V. V. & Bjerknes, M. Multiphoton activation of photo-strain-promoted azide alkyne cycloaddition “click” reagents enables in situ labeling with submicrometer resolution. J. Am. Chem. Soc. 139, 14029–14032 (2017).
Zhang, H. et al. Rapid bioorthogonal chemistry turn-on through enzymatic or long wavelength photocatalytic activation of tetrazine ligation. J. Am. Chem. Soc. 138, 5978–5983 (2016).
Truong, V. X., Tsang, K. M., Ercole, F. & Forsythe, J. S. Red light activation of tetrazine–norbornene conjugation for bioorthogonal polymer cross-linking across tissue. Chem. Mater. 29, 3678–3685 (2017).
Truong, V. X. & Barner-Kowollik, C. Red-light driven photocatalytic oxime ligation for bioorthogonal hydrogel design. ACS Macro Lett. 10, 78–83 (2021).
Goswami, P. P. et al. BODIPY-derived photoremovable protecting groups unmasked with green light. J. Am. Chem. Soc. 137, 3783–3786 (2015).
Peterson, J. A. et al. Family of BODIPY photocages cleaved by single photons of visible/near-infrared light. J. Am. Chem. Soc. 140, 7343–7346 (2018).
Kand, D. et al. Water-soluble BODIPY photocages with tunable cellular localization. J. Am. Chem. Soc. 142, 4970–4974 (2020).
Li, M., Dove, A. P. & Truong, V. X. Additive-free green light-induced ligation using BODIPY triggers. Angew. Chem. 132, 2304–2308 (2020).
Chung, K.-Y. et al. Rapid hydrogel formation via tandem visible light photouncaging and bioorthogonal ligation. Cell Rep. Phys. Sci. 3, 101185 (2022). This article is an in-depth demonstration of highly red-shifted BODIPY photocages for amine, hydrazine and aminooxy groups on starPEG macromers to create biocompatible hydrogels.
Jia, S. & Sletten, E. M. Spatiotemporal control of biology: synthetic photochemistry toolbox with far-red and near-infrared light. ACS Chem. Biol. 17, 3255–3269 (2022).
Shieh, P., Hill, M. R., Zhang, W., Kristufek, S. L. & Johnson, J. A. Clip chemistry: diverse (bio)(macro)molecular and material function through breaking covalent bonds. Chem. Rev. 121, 7059–7121 (2021).
Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).
Tsurkan, M. V. et al. Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Adv. Healthc. Mater. 4, 516–521 (2015).
Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).
Norris, S. C. P., Soto, J., Kasko, A. M. & Li, S. Photodegradable polyacrylamide gels for dynamic control of cell functions. ACS Appl. Mater. Interfaces 13, 5929–5944 (2021).
Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).
Griffin, D. R. & Kasko, A. M. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134, 13103–13107 (2012).
Griffin, D. R. & Kasko, A. M. Photoselective delivery of model therapeutics from hydrogels. ACS Macro Lett. 1, 1330–1334 (2012).
Gawade, P. M., Shadish, J. A., Badeau, B. A. & DeForest, C. A. Logic-based delivery of site-specifically modified proteins from environmentally responsive hydrogel biomaterials. Adv. Mater. 31, 1902462 (2019).
Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).
Norris, S. C. P., Tseng, P. & Kasko, A. M. Direct gradient photolithography of photodegradable hydrogels with patterned stiffness control with submicrometer resolution. ACS Biomater. Sci. Eng. 2, 1309–1318 (2016).
Batalov, I. et al. 4D grayscale biomaterial customization at high resolution and scale. Preprint at bioRxiv https://doi.org/10.1101/2024.01.31.578280 (2024). This article introduces GIZMO, enabling high-resolution nonbinary material modulation at scale.
Lunzer, M. et al. A modular approach to sensitized two-photon patterning of photodegradable hydrogels. Angew. Chem. 130, 15342–15347 (2018).
Azagarsamy, M. A., McKinnon, D. D., Alge, D. L. & Anseth, K. S. Coumarin-based photodegradable hydrogel: design, synthesis, gelation, and degradation kinetics. ACS Macro Lett. 3, 515–519 (2014).
de Gracia Lux, C. et al. Short soluble coumarin crosslinkers for light-controlled release of cells and proteins from hydrogels. Biomacromolecules 16, 3286–3296 (2015).
LeValley, P. J. et al. On-demand and tunable dual wavelength release of antibodies using light-responsive hydrogels. ACS Appl. Bio Mater. 3, 6944–6958 (2020).
Iturmendi, A., Theis, S., Maderegger, D., Monkowius, U. & Teasdale, I. Coumarin-caged polyphosphazenes with a visible-light driven on-demand degradation. Macromol. Rapid Commun. 39, 1800377 (2018).
Rapp, T. L. & DeForest, C. A. Targeting drug delivery with light: a highly focused approach. Adv. Drug Deliv. Rev. 171, 94–107 (2021).
Rapp, T. L. & DeForest, C. A. Tricolor visible wavelength-selective photodegradable hydrogel biomaterials. Nat. Commun. 14, 5250 (2023).
Rapp, T. L., Highley, C. B., Manor, B. C., Burdick, J. A. & Dmochowski, I. J. Ruthenium-crosslinked hydrogels with rapid, visible-light degradation. Chem. Eur. J. 24, 2328–2333 (2018).
Theis, S. et al. Metallo-supramolecular gels that are photocleavable with visible and near-infrared irradiation. Angew. Chem. Int. Ed. 56, 15857–15860 (2017).
Teasdale, I. et al. Dynamic supramolecular ruthenium-based gels responsive to visible/NIR light and heat. Chem. Eur. J. 25, 9851–9855 (2019).
Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).
Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).
Yang, Z. et al. B12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics. Sci. Adv. 8, eabm5482 (2022).
Jiang, B. et al. Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly. Sci. Adv. 6, eabc4824 (2020).
Shadish, J. A., Strange, A. C. & DeForest, C. A. Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J. Am. Chem. Soc. 141, 15619–15625 (2019). This article demonstrates the first application of a genetically encoded PhoCl fusion to selectively release bioactive proteins from a hydrogel.
Chapla, R., Hammer, J. A. & West, J. L. Adding dynamic biomolecule signaling to hydrogel systems via tethered photolabile cell-adhesive proteins. ACS Biomater. Sci. Eng. 8, 208–217 (2022).
DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 51, 1816–1819 (2012).
Wiley, K. L., Sutherland, B. P., Ogunnaike, B. A. & Kloxin, A. M. Rational design of hydrogel networks with dynamic mechanical properties to mimic matrix remodeling. Adv. Healthc. Mater. 11, 2101947 (2022).
Lu, P. et al. Wavelength-selective light-matter interactions in polymer science. Matter 4, 2172–2229 (2021).
Zhao, F., Bonasera, A., Nöchel, U., Behl, M. & Bléger, D. Reversible modulation of elasticity in fluoroazobenzene-containing hydrogels using green and blue light. Macromol. Rapid Commun. 39, 1700527 (2018).
Konrad, D. B. et al. Computational design and synthesis of a deeply red-shifted and bistable azobenzene. J. Am. Chem. Soc. 142, 6538–6547 (2020).
Zhao, Y.-L. & Stoddart, J. F. Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009).
Kuenstler, A. S. et al. Reconfiguring Gaussian curvature of hydrogel sheets with photoswitchable host–guest interactions. ACS Macro Lett. 9, 1172–1177 (2020).
Liubimtsev, N., Zagradska-Paromova, Z., Appelhans, D., Gaitzsch, J. & Voit, B. Photoresponsive double cross-linked supramolecular hydrogels based on a-cyclodextrin/azobenzene host–guest complex. Macromol. Chem. Phys. 224, 2200372 (2023).
Accardo, J. V. & Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 9, 5987–5993 (2018).
Accardo, J. V., McClure, E. R., Mosquera, M. A. & Kalow, J. A. Using visible light to tune boronic acid–ester equilibria. J. Am. Chem. Soc. 142, 19969–19979 (2020).
Ludwanowski, S. et al. Wavelength-gated adaptation of hydrogel properties via photo-dynamic multivalency in associative star polymers. Angew. Chem. Int. Ed. 60, 4358–4367 (2021).
Brown, T. E., Marozas, I. A. & Anseth, K. S. Amplified photodegradation of cell-laden hydrogels via an addition–fragmentation chain transfer reaction. Adv. Mater. 29, 1605001 (2017).
Gandavarapu, N. R., Azagarsamy, M. A. & Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 26, 2521–2526 (2014).
Grim, J. C. et al. A reversible and repeatable thiol–ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Cent. Sci. 4, 909–916 (2018).
Yavitt, F. M. et al. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Sci. Adv. 9, eadd5668 (2023).
Hushka, E. A., Yavitt, F. M., Brown, T. E., Dempsey, P. J. & Anseth, K. S. Relaxation of extracellular matrix forces directs crypt formation and architecture in intestinal organoids. Adv. Healthc. Mater. 9, 1901214 (2020).
Killaars, A. R. et al. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Adv. Sci. 6, 1801483 (2019).
Yavitt, F. M. et al. The effect of thiol structure on allyl sulfide photodegradable hydrogels and their application as a degradable scaffold for organoid passaging. Adv. Mater. 32, 1905366 (2020).
Wang, H. et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13, 755–758 (2016).
Duan, T., Bian, Q. & Li, H. Light-responsive dynamic protein hydrogels based on LOVTRAP. Langmuir 37, 10214–10222 (2021).
Duan, T., Bian, Q. & Li, H. Protein hydrogels with reversibly patterned multidimensional fluorescent images for information storage. Biomacromolecules 23, 3009–3016 (2022).
Hammer, J. A., Ruta, A. & West, J. L. Using tools from optogenetics to create light-responsive biomaterials: LOVTRAP-PEG hydrogels for dynamic peptide immobilization. Ann. Biomed. Eng. 48, 1885–1894 (2020).
Liu, L. et al. Cyclic stiffness modulation of cell-laden protein–polymer hydrogels in response to user-specified stimuli including light. Adv. Biosyst. 2, 1800240 (2018).
Hopkins, E. et al. An optogenetic platform to dynamically control the stiffness of collagen hydrogels. ACS Biomater. Sci. Eng. 7, 408–414 (2021).
Hörner, M. et al. Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv. Mater. 31, 1806727 (2019).
Emig, R. et al. Benchmarking of Cph1 mutants and DrBphP for light-responsive phytochrome-based hydrogels with reversibly adjustable mechanical properties. Adv. Biol. 6, 2000337 (2022).
Wu, X. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 11, 5556–5565 (2018).
Lyu, S. et al. Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem. Commun. 53, 13375–13378 (2017).
Zandrini, T., Florczak, S., Levato, R. & Ovsianikov, A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 41, 604–614 (2023).
Levato, R. et al. Light-based vat-polymerization bioprinting. Nat. Rev. Methods Primers 3, 47 (2023).
Li, W. et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 26, 106039 (2023).
Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).
Dhariwala, B., Hunt, E. & Boland, T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10, 1316–1322 (2004).
Lu, Y., Mapili, G., Suhali, G., Chen, S. & Roy, K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77A, 396–405 (2006).
Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).
Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).
You, S. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).
Duong, V. T. & Lin, C. Digital light processing 3D bioprinting of gelatin‐norbornene hydrogel for enhanced vascularization. Macromol. Biosci. 23, 2300213 (2023). This article reports DLP with norbornene chemistry to generate vascularized constructs and demonstrate secondary functionalization.
Raman, R. et al. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 5, 610–619 (2016).
Wang, M. et al. Digital light processing based bioprinting with composable gradients. Adv. Mater. 34, 2107038 (2022).
Grigoryan, B. et al. Development, characterization, and applications of multi-material stereolithography bioprinting. Sci. Rep. 11, 3171 (2021).
Kunwar, P. et al. Meniscus-enabled projection stereolithography (MAPS). Preprint at bioRxiv https://doi.org/10.1101/2023.06.12.544584 (2023).
Peng, X. et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 40, 101911 (2021).
Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photonics 16, 784–791 (2022).
Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).
Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).
Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).
Bernal, P. N. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019). This article is the first demonstration of volumetric printing for cellularized constructs using a GelMA bioink.
Ribezzi, D. et al. Shaping synthetic multicellular and complex multimaterial tissues via embedded extrusion‐volumetric printing of microgels. Adv. Mater. 35, 2301673 (2023).
Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver‐like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).
Falandt, M. et al. Spatial‐selective volumetric 4D printing and single‐photon grafting of biomolecules within centimeter‐scale hydrogels via tomographic manufacturing. Adv. Mater. Technol. 8, 2300026 (2023).
Chansoria, P. et al. Synergizing algorithmic design, photoclick chemistry and multi‐material volumetric printing for accelerating complex shape engineering. Adv. Sci. 10, 2300912 (2023).
Rizzo, R., Ruetsche, D., Liu, H. & Zenobi-Wong, M. Optimized photoclick (bio)resins for fast volumetric bioprinting. Adv. Mater. 33, 2102900 (2021).
Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006).
Ovsianikov, A. et al. Laser printing of cells into 3D scaffolds. Biofabrication 2, 014104 (2010).
Gao, L. et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ. Res. 120, 1318–1325 (2017).
Richter, B. et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. Adv. Mater. 29, 1604342 (2017).
Dobos, A. et al. Thiol–gelatin–norbornene bioink for laser‐based high‐definition bioprinting. Adv. Healthc. Mater. 9, 1900752 (2020).
Dobos, A. et al. On-chip high-definition bioprinting of microvascular structures. Biofabrication 13, 015016 (2021).
Tromayer, M. et al. A biocompatible diazosulfonate initiator for direct encapsulation of human stem cells via two-photon polymerization. Polym. Chem. 9, 3108–3117 (2018). This study reports the first cytocompatible two-photon initiator based on a diazosulfonate (4,4′-(1,2-ethenediyl)bis[2-(3-sulfophenyl)diazenesulfonate), allowing for improved cell viability during multiphoton biofabrication.
Urciuolo, A. et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat. Commun. 14, 3128 (2023).
Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).
Chen, Y. et al. Noninvasive in vivo 3D bioprinting. Sci. Adv. 6, eaba7406 (2020).
Pradhan, S., Keller, K. A., Sperduto, J. L. & Slater, J. H. Fundamentals of laser‐based hydrogel degradation and applications in cell and tissue engineering. Adv. Healthc. Mater. 6, 1700681 (2017).
Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S. & Seliktar, D. Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743–4752 (2009).
Arakawa, C. et al. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. Sci. Adv. 6, eaay7243 (2020).
Rayner, S. G. et al. Multiphoton-guided creation of complex organ-specific microvasculature. Adv. Healthc. Mater. 10, 2100031 (2021).
Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022). This study develops an approach for reproducibly patterning intestinal organoid geometry with high precision using oNB chemistry.
DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).
Munoz-Robles, B. G., Kopyeva, I. & DeForest, C. A. Surface patterning of hydrogel biomaterials to probe and direct cell–matrix interactions. Adv. Mater. Interfaces 7, 2001198 (2020).
Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).
Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl Med. 10, eaao0475 (2018).
Mabry, K. M., Lawrence, R. L. & Anseth, K. S. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials 49, 47–56 (2015).
Yeh, Y.-C. et al. Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials 145, 23–32 (2017).
Killaars, A. R., Walker, C. J. & Anseth, K. S. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc. Natl Acad. Sci. USA 117, 21258–21266 (2020).
Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014). This article demonstrates for the first time that mesenchymal stem cells possess mechanical memory based on duration spent on a stiff substrate via the YAP–TAZ and RUNX2 signalling pathways using photodegradable substrates.
Walker, C. J. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat. Biomed. Eng. 5, 1485–1499 (2021).
Lee, I.-N. et al. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces 10, 7765–7776 (2018).
Homma, K. et al. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling. Acta Biomater. 132, 103–113 (2021).
Yavitt, F. M., Kirkpatrick, B. E., Blatchley, M. R. & Anseth, K. S. 4D materials with photoadaptable properties instruct and enhance intestinal organoid development. ACS Biomater. Sci. Eng. 8, 4634–4638 (2022).
Marozas, I. A., Cooper-White, J. J. & Anseth, K. S. Photo-induced viscoelasticity in cytocompatible hydrogel substrates. New J. Phys. 21, 045004 (2019).
Carberry, B. J., Rao, V. V. & Anseth, K. S. Phototunable viscoelasticity in hydrogels through thioester exchange. Ann. Biomed. Eng. 48, 2053–2063 (2020).
Luo, Y. & Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249–253 (2004).
Aizawa, Y., Wylie, R. & Shoichet, M. Endothelial cell guidance in 3D patterned scaffolds. Adv. Mater. 22, 4831–4835 (2010).
Wade, R. J., Bassin, E. J., Gramlich, W. M. & Burdick, J. A. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater. 27, 1356–1362 (2015).
Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352–360 (2015).
Farrukh, A., Paez, J. I. & del Campo, A. 4D biomaterials for light-guided angiogenesis. Adv. Funct. Mater. 29, 1807734 (2019).
Nair, R. V., Farrukh, A. & del Campo, A. Light-regulated angiogenesis via a phototriggerable VEGF peptidomimetic. Adv. Healthc. Mater. 10, 2100488 (2021).
Boekhoven, J., Rubert Pérez, C. M., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. 52, 12077–12080 (2013).
Ricken, J., Medda, R. & Wegner, S. V. Photo-ECM: a blue light photoswitchable synthetic extracellular matrix protein for reversible control over cell–matrix adhesion. Adv. Biosyst. 3, 1800302 (2019).
Ma, D. et al. Photoresponsive smart hydrogel microsphere via host-guest interaction for 3D cell culture. Colloids Surf. A Physicochem. Eng. Asp. 522, 97–104 (2017).
Kim, Y. et al. Photoswitchable microgels for dynamic macrophage modulation. Adv. Mater. 34, 2205498 (2022).
Shadish, J. A. & DeForest, C. A. Site-selective protein modification: from functionalized proteins to functional biomaterials. Matter 2, 50–77 (2020).
Broguiere, N. et al. Morphogenesis guided by 3D patterning of growth factors in biological matrices. Adv. Mater. 32, 1908299 (2020).
Ma, H., Caldwell, A. S., Azagarsamy, M. A., Gonzalez Rodriguez, A. & Anseth, K. S. Bioorthogonal click chemistries enable simultaneous spatial patterning of multiple proteins to probe synergistic protein effects on fibroblast function. Biomaterials 255, 120205 (2020).
Jeon, O., Lee, K. & Alsberg, E. Spatial micropatterning of growth factors in 3D hydrogels for location-specific regulation of cellular behaviors. Small 14, e1800579 (2018).
Fisher, S. A. et al. Photo-immobilized EGF chemical gradients differentially impact breast cancer cell invasion and drug response in defined 3D hydrogels. Biomaterials 178, 751–766 (2018).
Ming, Z. et al. Photogenerated aldehydes for protein patterns on hydrogels and guidance of cell behavior. Adv. Funct. Mater. 28, 1706918 (2018).
Rizwan, M. et al. Photochemically activated Notch signaling hydrogel preferentially differentiates human derived hepatoblasts to cholangiocytes. Adv. Funct. Mater. 31, 2006116 (2021).
Lu, Y. H. et al. Temporally controlled photouncaged epidermal growth factor influences cell fate in hydrogels. ACS Biomater. Sci. Eng. 8, 185–195 (2022).
Sankaran, S., Zhao, S., Muth, C., Paez, J. & del Campo, A. Toward light-regulated living biomaterials. Adv. Sci. 5, 1800383 (2018).
Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).
Pearson, S., Feng, J. & del Campo, A. Lighting the path: light delivery strategies to activate photoresponsive biomaterials in vivo. Adv. Funct. Mater. 31, 2105989 (2021).
Fast, D. E. et al. Wavelength-dependent photochemistry of oxime ester photoinitiators. Macromolecules 50, 1815–1823 (2017).
Irshadeen, I. M. et al. Action plots in action: in-depth insights into photochemical reactivity. J. Am. Chem. Soc. 143, 21113–21126 (2021).
Pelloth, J. L. et al. Wavelength‐selective softening of hydrogel networks. Adv. Mater. 33, 2102184 (2021). This is the first example of multiplexed stepwise softening of a hydrogel with three distinct photodegradable crosslinkers.
Tong, X., Jiang, J., Zhu, D. & Yang, F. Hydrogels with dual gradients of mechanical and biochemical cues for deciphering cell-niche interactions. ACS Biomater. Sci. Eng. 2, 845–852 (2016).
Rape, A. D., Zibinsky, M., Murthy, N. & Kumar, S. A synthetic hydrogel for the high-throughput study of cell–ECM interactions. Nat. Commun. 6, 8129 (2015).
Vega, S. L. et al. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat. Commun. 9, 614 (2018).
Munoz-Robles, B. G. & DeForest, C. A. Irreversible light-activated SpyLigation mediates split-protein assembly in 4D. Nat. Protoc. 19, 1015–1052 (2024).
Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009).
Bryant, S. J., Nuttelman, C. R. & Anseth, K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000).
Hillel, A. T. et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl Med. 3, 93ra67 (2011).
Shih, H. & Lin, C.-C. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol. Rapid Commun. 34, 269–273 (2013).
Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).
Nizamoglu, M. et al. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Acta Biomater. 147, 50–62 (2022).
Fu, L. et al. Cartilage-like protein hydrogels engineered via entanglement. Nature 618, 740–747 (2023).
Smith, P. T. et al. Additive manufacturing of bovine serum albumin-based hydrogels and bioplastics. Biomacromolecules 21, 484–492 (2020).
Lim, K. S. et al. New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater. Sci. Eng. 2, 1752–1762 (2016).
Soliman, B. G. et al. Stepwise control of crosslinking in a one-pot system for bioprinting of low-density bioinks. Adv. Healthc. Mater. 9, 1901544 (2020).
Li, Z. et al. A straightforward synthesis and structure–activity relationship of highly efficient initiators for two-photon polymerization. Macromolecules 46, 352–361 (2013).
Ovsianikov, A. et al. Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30, 3787–3794 (2014).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s44222-024-00234-w