Light-based fabrication and 4D customization of hydrogel biomaterials – Nature Reviews Bioengineering

  • Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    Article 

    Google Scholar
     

  • Li, L., Scheiger, J. M. & Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 31, 1807333 (2019).

    Article 

    Google Scholar
     

  • Chatani, S., J. Kloxin, C. & Bowman, N. C. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym. Chem. 5, 2187–2201 (2014).

    Article 

    Google Scholar
     

  • Hill-West, J. L., Chowdhury, S. M., Slepian, M. J. & Hubbell, J. A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc. Natl Acad. Sci. USA 91, 5967–5971 (1994).

    Article 

    Google Scholar
     

  • West, J. L. & Hubbell, J. A. Photopolymerized hydrogel materials for drug delivery applications. React. Polym. 25, 139–147 (1995).

    Article 

    Google Scholar
     

  • Van Den Bulcke, A. I. et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–38 (2000).

    Article 

    Google Scholar
     

  • Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    Article 

    Google Scholar
     

  • Benton, J. A., DeForest, C. A., Vivekanandan, V. & Anseth, K. S. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15, 3221–3230 (2009).

    Article 

    Google Scholar
     

  • Burdick, J. A., Chung, C., Jia, X., Randolph, M. A. & Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6, 386–391 (2005).

    Article 

    Google Scholar
     

  • Park, Y. D., Tirelli, N. & Hubbell, J. A. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials 24, 893–900 (2003).

    Article 

    Google Scholar
     

  • Brinkman, W. T., Nagapudi, K., Thomas, B. S. & Chaikof, E. L. Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function. Biomacromolecules 4, 890–895 (2003).

    Article 

    Google Scholar
     

  • Kim, S. H. & Chu, C. C. Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM. J. Biomed. Mater. Res. 49, 517–527 (2000).

    <a data-track="click||click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4636(20000315)49:43.0.CO;2-8″ data-track-item_id=”10.1002/(SICI)1097-4636(20000315)49:43.0.CO;2-8″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4636%2820000315%2949%3A4%3C517%3A%3AAID-JBM10%3E3.0.CO%3B2-8″ aria-label=”Article reference 12″ data-doi=”10.1002/(SICI)1097-4636(20000315)49:43.0.CO;2-8″>Article 

    Google Scholar
     

  • Elbert, D. L. & Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2, 430–441 (2001).

    Article 

    Google Scholar
     

  • Cramer, N. B. & Bowman, C. N. Kinetics of thiol–ene and thiol–acrylate photopolymerizations with real-time fourier transform infrared. J. Polym. Sci. A Polym. Chem. 39, 3311–3319 (2001).

    Article 

    Google Scholar
     

  • Salinas, C. N. & Anseth, K. S. Mixed mode thiol−acrylate photopolymerizations for the synthesis of PEG−peptide hydrogels. Macromolecules 41, 6019–6026 (2008).

    Article 

    Google Scholar
     

  • Günay, K. A. et al. Photo-expansion microscopy enables super-resolution imaging of cells embedded in 3D hydrogels. Nat. Mater. 22, 777–785 (2023).

    Article 

    Google Scholar
     

  • Tibbitt, M. W., Kloxin, A. M., Sawicki, L. A. & Anseth, K. S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46, 2785–2792 (2013).

    Article 

    Google Scholar
     

  • Lin, C.-C., Raza, A. & Shih, H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32, 9685–9695 (2011).

    Article 

    Google Scholar
     

  • Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).

    Article 

    Google Scholar
     

  • Aimetti, A. A., Machen, A. J. & Anseth, K. S. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30, 6048–6054 (2009).

    Article 

    Google Scholar
     

  • Mũnoz, Z., Shih, H. & Lin, C.-C. Gelatin hydrogels formed by orthogonal thiol–norbornene photochemistry for cell encapsulation. Biomater. Sci. 2, 1063–1072 (2014).

    Article 

    Google Scholar
     

  • Soliman, B. G. et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv. Healthc. Mater. 11, 2101873 (2022).

    Article 

    Google Scholar
     

  • Gramlich, W. M., Kim, I. L. & Burdick, J. A. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34, 9803–9811 (2013).

    Article 

    Google Scholar
     

  • Yang, K. et al. Photo-crosslinked mono-component type II collagen hydrogel as a matrix to induce chondrogenic differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. B 5, 8707–8718 (2017).

    Article 

    Google Scholar
     

  • McOscar, T. V. C. & Gramlich, W. M. Hydrogels from norbornene-functionalized carboxymethyl cellulose using a UV-initiated thiol-ene click reaction. Cellulose 25, 6531–6545 (2018).

    Article 

    Google Scholar
     

  • Shih, H. & Lin, C.-C. Cross-linking and degradation of step-growth hydrogels formed by thiol–ene photoclick chemistry. Biomacromolecules 13, 2003–2012 (2012).

    Article 

    Google Scholar
     

  • Sawicki, L. A. & Kloxin, A. M. Design of thiol–ene photoclick hydrogels using facile techniques for cell culture applications. Biomater. Sci. 2, 1612–1626 (2014).

    Article 

    Google Scholar
     

  • DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).

    Article 

    Google Scholar
     

  • Nelson, B. R. et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv. Mater. https://doi.org/10.1002/adma.202211209 (2023). This article reports the first application of 1,2-dithiolanes as dynamic covalent photocrosslinkers in hydrogel biomaterials, demonstrating the versatility of this chemistry for dynamic stiffening, softening and biomolecule immobilization.

  • Nelson, B. R. et al. Facile physicochemical reprogramming of PEG-dithiolane microgels. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202302925 (2023).

  • Fairbanks, B. D. et al. Photoclick chemistry: a bright idea. Chem. Rev. 121, 6915–6990 (2021).

    Article 

    Google Scholar
     

  • Kharkar, P. M., Rehmann, M. S., Skeens, K. M., Maverakis, E. & Kloxin, A. M. Thiol–ene click hydrogels for therapeutic delivery. ACS Biomater. Sci. Eng. 2, 165–179 (2016).

    Article 

    Google Scholar
     

  • Chujo, Y., Sada, K. & Saegusa, T. Polyoxazoline having a coumarin moiety as a pendant group. Synthesis and photogelation. Macromolecules 23, 2693–2697 (1990).

    Article 

    Google Scholar
     

  • Tamate, R. et al. Photo-dimerization induced dynamic viscoelastic changes in ABA triblock copolymer-based hydrogels for 3D cell culture. Chem. Mater. 28, 6401–6408 (2016).

    Article 

    Google Scholar
     

  • Kabb, C. P., O’Bryan, C. S., Deng, C. C., Angelini, T. E. & Sumerlin, B. S. Photoreversible covalent hydrogels for soft-matter additive manufacturing. ACS Appl. Mater. Interfaces 10, 16793–16801 (2018).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proc. Natl Acad. Sci. USA 115, E1391–E1400 (2018).


    Google Scholar
     

  • Zhu, C. N. et al. Reconstructable gradient structures and reprogrammable 3D deformations of hydrogels with coumarin units as the photolabile crosslinks. Adv. Mater. 33, 2008057 (2021).

    Article 

    Google Scholar
     

  • Inacker, S., Schipplick, L., Kahler, P. & Hampp, N. Upgrading the toolbox: two-photon absorption induced cleavage of coumarin dimers for light-based 4D printing. Macromol. Rapid Commun. 44, 2300217 (2023).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002).

    Article 

    Google Scholar
     

  • Günay, K. A. et al. PEG–anthracene hydrogels as an on-demand stiffening matrix to study mechanobiology. Angew. Chem. Int. Ed. 58, 9912–9916 (2019).

    Article 

    Google Scholar
     

  • Truong, V. X., Li, F. & Forsythe, J. S. Versatile bioorthogonal hydrogel platform by catalyst-free visible light initiated photodimerization of anthracene. ACS Macro Lett. 6, 657–662 (2017).

    Article 

    Google Scholar
     

  • Silver, J. S. et al. Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. Sci. Adv. 7, eabe4501 (2021).

    Article 

    Google Scholar
     

  • Brown, T. E. et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. J. Am. Chem. Soc. 140, 11585–11588 (2018).

    Article 

    Google Scholar
     

  • Günay, K. A. et al. Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials 277, 121097 (2021).

    Article 

    Google Scholar
     

  • Clovis, J. S., Eckell, A., Huisgen, R. & Sustmann, R. 1.3-Dipolare Cycloadditionen, XXV. Der Nachweis des freien Diphenylnitrilimins als Zwischenstufe bei Cycloadditionen. Chem. Ber. 100, 60–70 (1967).

    Article 

    Google Scholar
     

  • Wang, Y., Hu, W. J., Song, W., Lim, R. K. V. & Lin, Q. Discovery of long-wavelength photoactivatable diaryltetrazoles for bioorthogonal 1,3-dipolar cycloaddition reactions. Org. Lett. 10, 3725–3728 (2008).

    Article 

    Google Scholar
     

  • Dietrich, M. et al. Photoclickable surfaces for profluorescent covalent polymer coatings. Adv. Funct. Mater. 22, 304–312 (2012).

    Article 

    Google Scholar
     

  • Wang, Y., Song, W., Hu, W. J. & Lin, Q. Fast alkene functionalization in vivo by photoclick chemistry: HOMO lifting of nitrile imine dipoles. Angew. Chem. Int. Ed. 48, 5330–5333 (2009).

    Article 

    Google Scholar
     

  • Yu, Z., Ohulchanskyy, T. Y., An, P., Prasad, P. N. & Lin, Q. Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells. J. Am. Chem. Soc. 135, 16766–16769 (2013).

    Article 

    Google Scholar
     

  • Lederhose, P. et al. Near-infrared photoinduced coupling reactions assisted by upconversion nanoparticles. Angew. Chem. Int. Ed. 55, 12195–12199 (2016).

    Article 

    Google Scholar
     

  • Liu, H. et al. A nucleoside derivative 5-vinyluridine (VrU) for imaging RNA in cells and animals. Bioconjugate Chem. 30, 2958–2966 (2019).

    Article 

    Google Scholar
     

  • Wu, Y., Guo, G., Zheng, J., Xing, D. & Zhang, T. Fluorogenic “photoclick” labeling and imaging of DNA with coumarin-fused tetrazole in vivo. ACS Sens. 4, 44–51 (2019).

    Article 

    Google Scholar
     

  • Fan, Y., Deng, C., Cheng, R., Meng, F. & Zhong, Z. In situ forming hydrogels via catalyst-free and bioorthogonal “tetrazole–alkene” photo-click chemistry. Biomacromolecules 14, 2814–2821 (2013).

    Article 

    Google Scholar
     

  • Li, S. et al. Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid canogels for traceable and targeted delivery of cytochrome c to breast tumor in mice. ACS Appl. Mater. Interfaces 8, 21155–21162 (2016).

    Article 

    Google Scholar
     

  • Truong, V. X., Li, F., Ercole, F. & Forsythe, J. S. Wavelength-selective coupling and decoupling of polymer chains via reversible [2 + 2] photocycloaddition of styrylpyrene for construction of cytocompatible photodynamic hydrogels. ACS Macro Lett. 7, 464–469 (2018).

    Article 

    Google Scholar
     

  • Marschner, D. E. et al. Visible light [2 + 2] cycloadditions for reversible polymer ligation. Macromolecules 51, 3802–3807 (2018).

    Article 

    Google Scholar
     

  • Kalayci, K., Frisch, H., Barner-Kowollik, C. & Truong, V. X. Wavelength-dependent stiffening of hydrogel matrices via redshifted [2+2] photocycloadditions. Adv. Funct. Mater. 30, 1908171 (2020).

    Article 

    Google Scholar
     

  • Kalayci, K., Frisch, H., Truong, V. X. & Barner-Kowollik, C. Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline — controlling photoreactivity by pH. Nat. Commun. 11, 4193 (2020).

    Article 

    Google Scholar
     

  • Cui, X. et al. Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Adv. Healthc. Mater. 9, 1901667 (2020).

    Article 

    Google Scholar
     

  • Jeon, E. Y. et al. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials 67, 11–19 (2015).

    Article 

    Google Scholar
     

  • Partlow, B. P., Applegate, M. B., Omenetto, F. G. & Kaplan, D. L. Dityrosine cross-linking in designing biomaterials. ACS Biomater. Sci. Eng. 2, 2108–2121 (2016).

    Article 

    Google Scholar
     

  • Atienza-Roca, P. et al. Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomater. Sci. 8, 5005–5019 (2020).

    Article 

    Google Scholar
     

  • Liu, H., Nguyen, H. D. & Lin, C. Dynamic PEG–peptide hydrogels via visible light and FMN‐induced tyrosine dimerization. Adv. Healthc. Mater. 7, 1800954 (2018).

    Article 

    Google Scholar
     

  • Batalov, I., Stevens, K. R. & DeForest, C. A. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proc. Natl Acad. Sci. USA 118, e2014194118 (2021).

    Article 

    Google Scholar
     

  • DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    Article 

    Google Scholar
     

  • Farahani, P. E., Adelmund, S. M., Shadish, J. A. & DeForest, C. A. Photomediated oxime ligation as a bioorthogonal tool for spatiotemporally-controlled hydrogel formation and modification. J. Mater. Chem. B 5, 4435–4442 (2017).

    Article 

    Google Scholar
     

  • Fitzgerald, E. R., Mineo, A. M., Pryor, M. L. & Buck, M. E. Photomediated post-fabrication modification of azlactone-functionalized gels for the development of hydrogel actuators. Soft Matter 16, 6044–6049 (2020).

    Article 

    Google Scholar
     

  • Ruskowitz, E. R. et al. Spatiotemporal functional assembly of split protein pairs through a light-activated SpyLigation. Nat. Chem. 15, 694–704 (2023).

    Article 

    Google Scholar
     

  • Furuta, T., Torigai, H., Sugimoto, M. & Iwamura, M. Photochemical properties of new photolabile cAMP derivatives in a physiological saline solution. J. Org. Chem. 60, 3953–3956 (1995).

    Article 

    Google Scholar
     

  • Furuta, T. et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc. Natl Acad. Sci. USA 96, 1193–1200 (1999).

    Article 

    Google Scholar
     

  • Bojtár, M., Kormos, A., Kis-Petik, K., Kellermayer, M. & Kele, P. Green-light activatable, water-soluble red-shifted coumarin photocages. Org. Lett. 21, 9410–9414 (2019).

    Article 

    Google Scholar
     

  • Rahman, N., Purpura, K. A., Wylie, R. G., Zandstra, P. W. & Shoichet, M. S. The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells. Biomaterials 31, 8262–8270 (2010).

    Article 

    Google Scholar
     

  • Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).

    Article 

    Google Scholar
     

  • Wylie, R. G. & Shoichet, M. S. Two-photon micropatterning of amines within an agarose hydrogel. J. Mater. Chem. 18, 2716–2721 (2008).

    Article 

    Google Scholar
     

  • Bailey, S. J. et al. Design, synthesis, and application of a water-soluble photocage for aqueous cyclopentadiene-based Diels-Alder photoclick chemistry in hydrogels. Angew. Chem. Int. Ed. 62, e202301157 (2023).

    Article 

    Google Scholar
     

  • Bailey, S. J. et al. Diels–Alder photoclick patterning of extracellular matrix for spatially controlled cell behaviors. Adv. Mater. 35, 2303453 (2023).

    Article 

    Google Scholar
     

  • Poloukhtine, A. A., Mbua, N. E., Wolfert, M. A., Boons, G.-J. & Popik, V. V. Selective labeling of living cells by a photo-triggered click reaction. J. Am. Chem. Soc. 131, 15769–15776 (2009).

    Article 

    Google Scholar
     

  • Bjerknes, M., Cheng, H., McNitt, C. D. & Popik, V. V. Facile quenching and spatial patterning of cylooctynes via strain-promoted alkyne–azide cycloaddition of inorganic azides. Bioconjugate Chem. 28, 1560–1565 (2017).

    Article 

    Google Scholar
     

  • McNitt, C. D., Cheng, H., Ullrich, S., Popik, V. V. & Bjerknes, M. Multiphoton activation of photo-strain-promoted azide alkyne cycloaddition “click” reagents enables in situ labeling with submicrometer resolution. J. Am. Chem. Soc. 139, 14029–14032 (2017).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Rapid bioorthogonal chemistry turn-on through enzymatic or long wavelength photocatalytic activation of tetrazine ligation. J. Am. Chem. Soc. 138, 5978–5983 (2016).

    Article 

    Google Scholar
     

  • Truong, V. X., Tsang, K. M., Ercole, F. & Forsythe, J. S. Red light activation of tetrazine–norbornene conjugation for bioorthogonal polymer cross-linking across tissue. Chem. Mater. 29, 3678–3685 (2017).

    Article 

    Google Scholar
     

  • Truong, V. X. & Barner-Kowollik, C. Red-light driven photocatalytic oxime ligation for bioorthogonal hydrogel design. ACS Macro Lett. 10, 78–83 (2021).

    Article 

    Google Scholar
     

  • Goswami, P. P. et al. BODIPY-derived photoremovable protecting groups unmasked with green light. J. Am. Chem. Soc. 137, 3783–3786 (2015).

    Article 

    Google Scholar
     

  • Peterson, J. A. et al. Family of BODIPY photocages cleaved by single photons of visible/near-infrared light. J. Am. Chem. Soc. 140, 7343–7346 (2018).

    Article 

    Google Scholar
     

  • Kand, D. et al. Water-soluble BODIPY photocages with tunable cellular localization. J. Am. Chem. Soc. 142, 4970–4974 (2020).

    Article 

    Google Scholar
     

  • Li, M., Dove, A. P. & Truong, V. X. Additive-free green light-induced ligation using BODIPY triggers. Angew. Chem. 132, 2304–2308 (2020).

    Article 

    Google Scholar
     

  • Chung, K.-Y. et al. Rapid hydrogel formation via tandem visible light photouncaging and bioorthogonal ligation. Cell Rep. Phys. Sci. 3, 101185 (2022). This article is an in-depth demonstration of highly red-shifted BODIPY photocages for amine, hydrazine and aminooxy groups on starPEG macromers to create biocompatible hydrogels.

    Article 

    Google Scholar
     

  • Jia, S. & Sletten, E. M. Spatiotemporal control of biology: synthetic photochemistry toolbox with far-red and near-infrared light. ACS Chem. Biol. 17, 3255–3269 (2022).

    Article 

    Google Scholar
     

  • Shieh, P., Hill, M. R., Zhang, W., Kristufek, S. L. & Johnson, J. A. Clip chemistry: diverse (bio)(macro)molecular and material function through breaking covalent bonds. Chem. Rev. 121, 7059–7121 (2021).

    Article 

    Google Scholar
     

  • Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).

    Article 

    Google Scholar
     

  • Tsurkan, M. V. et al. Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Adv. Healthc. Mater. 4, 516–521 (2015).

    Article 

    Google Scholar
     

  • Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article 

    Google Scholar
     

  • Norris, S. C. P., Soto, J., Kasko, A. M. & Li, S. Photodegradable polyacrylamide gels for dynamic control of cell functions. ACS Appl. Mater. Interfaces 13, 5929–5944 (2021).

    Article 

    Google Scholar
     

  • Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).

    Article 

    Google Scholar
     

  • Griffin, D. R. & Kasko, A. M. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134, 13103–13107 (2012).

    Article 

    Google Scholar
     

  • Griffin, D. R. & Kasko, A. M. Photoselective delivery of model therapeutics from hydrogels. ACS Macro Lett. 1, 1330–1334 (2012).

    Article 

    Google Scholar
     

  • Gawade, P. M., Shadish, J. A., Badeau, B. A. & DeForest, C. A. Logic-based delivery of site-specifically modified proteins from environmentally responsive hydrogel biomaterials. Adv. Mater. 31, 1902462 (2019).

    Article 

    Google Scholar
     

  • Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    Article 

    Google Scholar
     

  • Norris, S. C. P., Tseng, P. & Kasko, A. M. Direct gradient photolithography of photodegradable hydrogels with patterned stiffness control with submicrometer resolution. ACS Biomater. Sci. Eng. 2, 1309–1318 (2016).

    Article 

    Google Scholar
     

  • Batalov, I. et al. 4D grayscale biomaterial customization at high resolution and scale. Preprint at bioRxiv https://doi.org/10.1101/2024.01.31.578280 (2024). This article introduces GIZMO, enabling high-resolution nonbinary material modulation at scale.

  • Lunzer, M. et al. A modular approach to sensitized two-photon patterning of photodegradable hydrogels. Angew. Chem. 130, 15342–15347 (2018).

    Article 

    Google Scholar
     

  • Azagarsamy, M. A., McKinnon, D. D., Alge, D. L. & Anseth, K. S. Coumarin-based photodegradable hydrogel: design, synthesis, gelation, and degradation kinetics. ACS Macro Lett. 3, 515–519 (2014).

    Article 

    Google Scholar
     

  • de Gracia Lux, C. et al. Short soluble coumarin crosslinkers for light-controlled release of cells and proteins from hydrogels. Biomacromolecules 16, 3286–3296 (2015).

    Article 

    Google Scholar
     

  • LeValley, P. J. et al. On-demand and tunable dual wavelength release of antibodies using light-responsive hydrogels. ACS Appl. Bio Mater. 3, 6944–6958 (2020).

    Article 

    Google Scholar
     

  • Iturmendi, A., Theis, S., Maderegger, D., Monkowius, U. & Teasdale, I. Coumarin-caged polyphosphazenes with a visible-light driven on-demand degradation. Macromol. Rapid Commun. 39, 1800377 (2018).

    Article 

    Google Scholar
     

  • Rapp, T. L. & DeForest, C. A. Targeting drug delivery with light: a highly focused approach. Adv. Drug Deliv. Rev. 171, 94–107 (2021).

    Article 

    Google Scholar
     

  • Rapp, T. L. & DeForest, C. A. Tricolor visible wavelength-selective photodegradable hydrogel biomaterials. Nat. Commun. 14, 5250 (2023).

    Article 

    Google Scholar
     

  • Rapp, T. L., Highley, C. B., Manor, B. C., Burdick, J. A. & Dmochowski, I. J. Ruthenium-crosslinked hydrogels with rapid, visible-light degradation. Chem. Eur. J. 24, 2328–2333 (2018).

    Article 

    Google Scholar
     

  • Theis, S. et al. Metallo-supramolecular gels that are photocleavable with visible and near-infrared irradiation. Angew. Chem. Int. Ed. 56, 15857–15860 (2017).

    Article 

    Google Scholar
     

  • Teasdale, I. et al. Dynamic supramolecular ruthenium-based gels responsive to visible/NIR light and heat. Chem. Eur. J. 25, 9851–9855 (2019).

    Article 

    Google Scholar
     

  • Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article 

    Google Scholar
     

  • Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

    Article 

    Google Scholar
     

  • Yang, Z. et al. B12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics. Sci. Adv. 8, eabm5482 (2022).

    Article 

    Google Scholar
     

  • Jiang, B. et al. Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly. Sci. Adv. 6, eabc4824 (2020).

    Article 

    Google Scholar
     

  • Shadish, J. A., Strange, A. C. & DeForest, C. A. Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J. Am. Chem. Soc. 141, 15619–15625 (2019). This article demonstrates the first application of a genetically encoded PhoCl fusion to selectively release bioactive proteins from a hydrogel.

    Article 

    Google Scholar
     

  • Chapla, R., Hammer, J. A. & West, J. L. Adding dynamic biomolecule signaling to hydrogel systems via tethered photolabile cell-adhesive proteins. ACS Biomater. Sci. Eng. 8, 208–217 (2022).

    Article 

    Google Scholar
     

  • DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 51, 1816–1819 (2012).

    Article 

    Google Scholar
     

  • Wiley, K. L., Sutherland, B. P., Ogunnaike, B. A. & Kloxin, A. M. Rational design of hydrogel networks with dynamic mechanical properties to mimic matrix remodeling. Adv. Healthc. Mater. 11, 2101947 (2022).

    Article 

    Google Scholar
     

  • Lu, P. et al. Wavelength-selective light-matter interactions in polymer science. Matter 4, 2172–2229 (2021).

    Article 

    Google Scholar
     

  • Zhao, F., Bonasera, A., Nöchel, U., Behl, M. & Bléger, D. Reversible modulation of elasticity in fluoroazobenzene-containing hydrogels using green and blue light. Macromol. Rapid Commun. 39, 1700527 (2018).

    Article 

    Google Scholar
     

  • Konrad, D. B. et al. Computational design and synthesis of a deeply red-shifted and bistable azobenzene. J. Am. Chem. Soc. 142, 6538–6547 (2020).

    Article 

    Google Scholar
     

  • Zhao, Y.-L. & Stoddart, J. F. Azobenzene-based light-responsive hydrogel system. Langmuir 25, 8442–8446 (2009).

    Article 

    Google Scholar
     

  • Kuenstler, A. S. et al. Reconfiguring Gaussian curvature of hydrogel sheets with photoswitchable host–guest interactions. ACS Macro Lett. 9, 1172–1177 (2020).

    Article 

    Google Scholar
     

  • Liubimtsev, N., Zagradska-Paromova, Z., Appelhans, D., Gaitzsch, J. & Voit, B. Photoresponsive double cross-linked supramolecular hydrogels based on a-cyclodextrin/azobenzene host–guest complex. Macromol. Chem. Phys. 224, 2200372 (2023).

    Article 

    Google Scholar
     

  • Accardo, J. V. & Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 9, 5987–5993 (2018).

    Article 

    Google Scholar
     

  • Accardo, J. V., McClure, E. R., Mosquera, M. A. & Kalow, J. A. Using visible light to tune boronic acid–ester equilibria. J. Am. Chem. Soc. 142, 19969–19979 (2020).

    Article 

    Google Scholar
     

  • Ludwanowski, S. et al. Wavelength-gated adaptation of hydrogel properties via photo-dynamic multivalency in associative star polymers. Angew. Chem. Int. Ed. 60, 4358–4367 (2021).

    Article 

    Google Scholar
     

  • Brown, T. E., Marozas, I. A. & Anseth, K. S. Amplified photodegradation of cell-laden hydrogels via an addition–fragmentation chain transfer reaction. Adv. Mater. 29, 1605001 (2017).

    Article 

    Google Scholar
     

  • Gandavarapu, N. R., Azagarsamy, M. A. & Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 26, 2521–2526 (2014).

    Article 

    Google Scholar
     

  • Grim, J. C. et al. A reversible and repeatable thiol–ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Cent. Sci. 4, 909–916 (2018).

    Article 

    Google Scholar
     

  • Yavitt, F. M. et al. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Sci. Adv. 9, eadd5668 (2023).

    Article 

    Google Scholar
     

  • Hushka, E. A., Yavitt, F. M., Brown, T. E., Dempsey, P. J. & Anseth, K. S. Relaxation of extracellular matrix forces directs crypt formation and architecture in intestinal organoids. Adv. Healthc. Mater. 9, 1901214 (2020).

    Article 

    Google Scholar
     

  • Killaars, A. R. et al. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Adv. Sci. 6, 1801483 (2019).

    Article 

    Google Scholar
     

  • Yavitt, F. M. et al. The effect of thiol structure on allyl sulfide photodegradable hydrogels and their application as a degradable scaffold for organoid passaging. Adv. Mater. 32, 1905366 (2020).

    Article 

    Google Scholar
     

  • Wang, H. et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13, 755–758 (2016).

    Article 

    Google Scholar
     

  • Duan, T., Bian, Q. & Li, H. Light-responsive dynamic protein hydrogels based on LOVTRAP. Langmuir 37, 10214–10222 (2021).

    Article 

    Google Scholar
     

  • Duan, T., Bian, Q. & Li, H. Protein hydrogels with reversibly patterned multidimensional fluorescent images for information storage. Biomacromolecules 23, 3009–3016 (2022).

    Article 

    Google Scholar
     

  • Hammer, J. A., Ruta, A. & West, J. L. Using tools from optogenetics to create light-responsive biomaterials: LOVTRAP-PEG hydrogels for dynamic peptide immobilization. Ann. Biomed. Eng. 48, 1885–1894 (2020).

    Article 

    Google Scholar
     

  • Liu, L. et al. Cyclic stiffness modulation of cell-laden protein–polymer hydrogels in response to user-specified stimuli including light. Adv. Biosyst. 2, 1800240 (2018).

    Article 

    Google Scholar
     

  • Hopkins, E. et al. An optogenetic platform to dynamically control the stiffness of collagen hydrogels. ACS Biomater. Sci. Eng. 7, 408–414 (2021).

    Article 

    Google Scholar
     

  • Hörner, M. et al. Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv. Mater. 31, 1806727 (2019).

    Article 

    Google Scholar
     

  • Emig, R. et al. Benchmarking of Cph1 mutants and DrBphP for light-responsive phytochrome-based hydrogels with reversibly adjustable mechanical properties. Adv. Biol. 6, 2000337 (2022).

    Article 

    Google Scholar
     

  • Wu, X. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 11, 5556–5565 (2018).

    Article 

    Google Scholar
     

  • Lyu, S. et al. Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem. Commun. 53, 13375–13378 (2017).

    Article 

    Google Scholar
     

  • Zandrini, T., Florczak, S., Levato, R. & Ovsianikov, A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 41, 604–614 (2023).

    Article 

    Google Scholar
     

  • Levato, R. et al. Light-based vat-polymerization bioprinting. Nat. Rev. Methods Primers 3, 47 (2023).

    Article 

    Google Scholar
     

  • Li, W. et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 26, 106039 (2023).

    Article 

    Google Scholar
     

  • Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).

    Article 

    Google Scholar
     

  • Dhariwala, B., Hunt, E. & Boland, T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10, 1316–1322 (2004).

    Article 

    Google Scholar
     

  • Lu, Y., Mapili, G., Suhali, G., Chen, S. & Roy, K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77A, 396–405 (2006).

    Article 

    Google Scholar
     

  • Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).

    Article 

    Google Scholar
     

  • Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    Article 

    Google Scholar
     

  • You, S. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).

    Article 

    Google Scholar
     

  • Duong, V. T. & Lin, C. Digital light processing 3D bioprinting of gelatin‐norbornene hydrogel for enhanced vascularization. Macromol. Biosci. 23, 2300213 (2023). This article reports DLP with norbornene chemistry to generate vascularized constructs and demonstrate secondary functionalization.

    Article 

    Google Scholar
     

  • Raman, R. et al. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 5, 610–619 (2016).

    Article 

    Google Scholar
     

  • Wang, M. et al. Digital light processing based bioprinting with composable gradients. Adv. Mater. 34, 2107038 (2022).

    Article 

    Google Scholar
     

  • Grigoryan, B. et al. Development, characterization, and applications of multi-material stereolithography bioprinting. Sci. Rep. 11, 3171 (2021).

    Article 

    Google Scholar
     

  • Kunwar, P. et al. Meniscus-enabled projection stereolithography (MAPS). Preprint at bioRxiv https://doi.org/10.1101/2023.06.12.544584 (2023).

  • Peng, X. et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 40, 101911 (2021).


    Google Scholar
     

  • Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photonics 16, 784–791 (2022).

    Article 

    Google Scholar
     

  • Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article 

    Google Scholar
     

  • Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).

    Article 

    Google Scholar
     

  • Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article 

    Google Scholar
     

  • Bernal, P. N. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019). This article is the first demonstration of volumetric printing for cellularized constructs using a GelMA bioink.

    Article 

    Google Scholar
     

  • Ribezzi, D. et al. Shaping synthetic multicellular and complex multimaterial tissues via embedded extrusion‐volumetric printing of microgels. Adv. Mater. 35, 2301673 (2023).

    Article 

    Google Scholar
     

  • Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver‐like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).

    Article 

    Google Scholar
     

  • Falandt, M. et al. Spatial‐selective volumetric 4D printing and single‐photon grafting of biomolecules within centimeter‐scale hydrogels via tomographic manufacturing. Adv. Mater. Technol. 8, 2300026 (2023).

    Article 

    Google Scholar
     

  • Chansoria, P. et al. Synergizing algorithmic design, photoclick chemistry and multi‐material volumetric printing for accelerating complex shape engineering. Adv. Sci. 10, 2300912 (2023).

    Article 

    Google Scholar
     

  • Rizzo, R., Ruetsche, D., Liu, H. & Zenobi-Wong, M. Optimized photoclick (bio)resins for fast volumetric bioprinting. Adv. Mater. 33, 2102900 (2021).

    Article 

    Google Scholar
     

  • Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006).

    Article 

    Google Scholar
     

  • Ovsianikov, A. et al. Laser printing of cells into 3D scaffolds. Biofabrication 2, 014104 (2010).

    Article 

    Google Scholar
     

  • Gao, L. et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ. Res. 120, 1318–1325 (2017).

    Article 

    Google Scholar
     

  • Richter, B. et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. Adv. Mater. 29, 1604342 (2017).

    Article 

    Google Scholar
     

  • Dobos, A. et al. Thiol–gelatin–norbornene bioink for laser‐based high‐definition bioprinting. Adv. Healthc. Mater. 9, 1900752 (2020).

    Article 

    Google Scholar
     

  • Dobos, A. et al. On-chip high-definition bioprinting of microvascular structures. Biofabrication 13, 015016 (2021).

    Article 

    Google Scholar
     

  • Tromayer, M. et al. A biocompatible diazosulfonate initiator for direct encapsulation of human stem cells via two-photon polymerization. Polym. Chem. 9, 3108–3117 (2018). This study reports the first cytocompatible two-photon initiator based on a diazosulfonate (4,4′-(1,2-ethenediyl)bis[2-(3-sulfophenyl)diazenesulfonate), allowing for improved cell viability during multiphoton biofabrication.

    Article 

    Google Scholar
     

  • Urciuolo, A. et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat. Commun. 14, 3128 (2023).

    Article 

    Google Scholar
     

  • Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Noninvasive in vivo 3D bioprinting. Sci. Adv. 6, eaba7406 (2020).

    Article 

    Google Scholar
     

  • Pradhan, S., Keller, K. A., Sperduto, J. L. & Slater, J. H. Fundamentals of laser‐based hydrogel degradation and applications in cell and tissue engineering. Adv. Healthc. Mater. 6, 1700681 (2017).


    Google Scholar
     

  • Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S. & Seliktar, D. Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743–4752 (2009).

    Article 

    Google Scholar
     

  • Arakawa, C. et al. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. Sci. Adv. 6, eaay7243 (2020).

    Article 

    Google Scholar
     

  • Rayner, S. G. et al. Multiphoton-guided creation of complex organ-specific microvasculature. Adv. Healthc. Mater. 10, 2100031 (2021).

    Article 

    Google Scholar
     

  • Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022). This study develops an approach for reproducibly patterning intestinal organoid geometry with high precision using oNB chemistry.

    Article 

    Google Scholar
     

  • DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

    Article 

    Google Scholar
     

  • Munoz-Robles, B. G., Kopyeva, I. & DeForest, C. A. Surface patterning of hydrogel biomaterials to probe and direct cell–matrix interactions. Adv. Mater. Interfaces 7, 2001198 (2020).

    Article 

    Google Scholar
     

  • Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article 

    Google Scholar
     

  • Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl Med. 10, eaao0475 (2018).

    Article 

    Google Scholar
     

  • Mabry, K. M., Lawrence, R. L. & Anseth, K. S. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials 49, 47–56 (2015).

    Article 

    Google Scholar
     

  • Yeh, Y.-C. et al. Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials 145, 23–32 (2017).

    Article 

    Google Scholar
     

  • Killaars, A. R., Walker, C. J. & Anseth, K. S. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc. Natl Acad. Sci. USA 117, 21258–21266 (2020).

    Article 

    Google Scholar
     

  • Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014). This article demonstrates for the first time that mesenchymal stem cells possess mechanical memory based on duration spent on a stiff substrate via the YAP–TAZ and RUNX2 signalling pathways using photodegradable substrates.

    Article 

    Google Scholar
     

  • Walker, C. J. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat. Biomed. Eng. 5, 1485–1499 (2021).

    Article 

    Google Scholar
     

  • Lee, I.-N. et al. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces 10, 7765–7776 (2018).

    Article 

    Google Scholar
     

  • Homma, K. et al. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling. Acta Biomater. 132, 103–113 (2021).

    Article 

    Google Scholar
     

  • Yavitt, F. M., Kirkpatrick, B. E., Blatchley, M. R. & Anseth, K. S. 4D materials with photoadaptable properties instruct and enhance intestinal organoid development. ACS Biomater. Sci. Eng. 8, 4634–4638 (2022).

    Article 

    Google Scholar
     

  • Marozas, I. A., Cooper-White, J. J. & Anseth, K. S. Photo-induced viscoelasticity in cytocompatible hydrogel substrates. New J. Phys. 21, 045004 (2019).

    Article 

    Google Scholar
     

  • Carberry, B. J., Rao, V. V. & Anseth, K. S. Phototunable viscoelasticity in hydrogels through thioester exchange. Ann. Biomed. Eng. 48, 2053–2063 (2020).

    Article 

    Google Scholar
     

  • Luo, Y. & Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249–253 (2004).

    Article 

    Google Scholar
     

  • Aizawa, Y., Wylie, R. & Shoichet, M. Endothelial cell guidance in 3D patterned scaffolds. Adv. Mater. 22, 4831–4835 (2010).

    Article 

    Google Scholar
     

  • Wade, R. J., Bassin, E. J., Gramlich, W. M. & Burdick, J. A. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater. 27, 1356–1362 (2015).

    Article 

    Google Scholar
     

  • Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352–360 (2015).

    Article 

    Google Scholar
     

  • Farrukh, A., Paez, J. I. & del Campo, A. 4D biomaterials for light-guided angiogenesis. Adv. Funct. Mater. 29, 1807734 (2019).

    Article 

    Google Scholar
     

  • Nair, R. V., Farrukh, A. & del Campo, A. Light-regulated angiogenesis via a phototriggerable VEGF peptidomimetic. Adv. Healthc. Mater. 10, 2100488 (2021).

    Article 

    Google Scholar
     

  • Boekhoven, J., Rubert Pérez, C. M., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. 52, 12077–12080 (2013).

    Article 

    Google Scholar
     

  • Ricken, J., Medda, R. & Wegner, S. V. Photo-ECM: a blue light photoswitchable synthetic extracellular matrix protein for reversible control over cell–matrix adhesion. Adv. Biosyst. 3, 1800302 (2019).

    Article 

    Google Scholar
     

  • Ma, D. et al. Photoresponsive smart hydrogel microsphere via host-guest interaction for 3D cell culture. Colloids Surf. A Physicochem. Eng. Asp. 522, 97–104 (2017).

    Article 

    Google Scholar
     

  • Kim, Y. et al. Photoswitchable microgels for dynamic macrophage modulation. Adv. Mater. 34, 2205498 (2022).

    Article 

    Google Scholar
     

  • Shadish, J. A. & DeForest, C. A. Site-selective protein modification: from functionalized proteins to functional biomaterials. Matter 2, 50–77 (2020).

    Article 

    Google Scholar
     

  • Broguiere, N. et al. Morphogenesis guided by 3D patterning of growth factors in biological matrices. Adv. Mater. 32, 1908299 (2020).

    Article 

    Google Scholar
     

  • Ma, H., Caldwell, A. S., Azagarsamy, M. A., Gonzalez Rodriguez, A. & Anseth, K. S. Bioorthogonal click chemistries enable simultaneous spatial patterning of multiple proteins to probe synergistic protein effects on fibroblast function. Biomaterials 255, 120205 (2020).

    Article 

    Google Scholar
     

  • Jeon, O., Lee, K. & Alsberg, E. Spatial micropatterning of growth factors in 3D hydrogels for location-specific regulation of cellular behaviors. Small 14, e1800579 (2018).

    Article 

    Google Scholar
     

  • Fisher, S. A. et al. Photo-immobilized EGF chemical gradients differentially impact breast cancer cell invasion and drug response in defined 3D hydrogels. Biomaterials 178, 751–766 (2018).

    Article 

    Google Scholar
     

  • Ming, Z. et al. Photogenerated aldehydes for protein patterns on hydrogels and guidance of cell behavior. Adv. Funct. Mater. 28, 1706918 (2018).

    Article 

    Google Scholar
     

  • Rizwan, M. et al. Photochemically activated Notch signaling hydrogel preferentially differentiates human derived hepatoblasts to cholangiocytes. Adv. Funct. Mater. 31, 2006116 (2021).

    Article 

    Google Scholar
     

  • Lu, Y. H. et al. Temporally controlled photouncaged epidermal growth factor influences cell fate in hydrogels. ACS Biomater. Sci. Eng. 8, 185–195 (2022).

    Article 

    Google Scholar
     

  • Sankaran, S., Zhao, S., Muth, C., Paez, J. & del Campo, A. Toward light-regulated living biomaterials. Adv. Sci. 5, 1800383 (2018).

    Article 

    Google Scholar
     

  • Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).

    Article 

    Google Scholar
     

  • Pearson, S., Feng, J. & del Campo, A. Lighting the path: light delivery strategies to activate photoresponsive biomaterials in vivo. Adv. Funct. Mater. 31, 2105989 (2021).

    Article 

    Google Scholar
     

  • Fast, D. E. et al. Wavelength-dependent photochemistry of oxime ester photoinitiators. Macromolecules 50, 1815–1823 (2017).

    Article 

    Google Scholar
     

  • Irshadeen, I. M. et al. Action plots in action: in-depth insights into photochemical reactivity. J. Am. Chem. Soc. 143, 21113–21126 (2021).

    Article 

    Google Scholar
     

  • Pelloth, J. L. et al. Wavelength‐selective softening of hydrogel networks. Adv. Mater. 33, 2102184 (2021). This is the first example of multiplexed stepwise softening of a hydrogel with three distinct photodegradable crosslinkers.

    Article 

    Google Scholar
     

  • Tong, X., Jiang, J., Zhu, D. & Yang, F. Hydrogels with dual gradients of mechanical and biochemical cues for deciphering cell-niche interactions. ACS Biomater. Sci. Eng. 2, 845–852 (2016).

    Article 

    Google Scholar
     

  • Rape, A. D., Zibinsky, M., Murthy, N. & Kumar, S. A synthetic hydrogel for the high-throughput study of cell–ECM interactions. Nat. Commun. 6, 8129 (2015).

    Article 

    Google Scholar
     

  • Vega, S. L. et al. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat. Commun. 9, 614 (2018).

    Article 

    Google Scholar
     

  • Munoz-Robles, B. G. & DeForest, C. A. Irreversible light-activated SpyLigation mediates split-protein assembly in 4D. Nat. Protoc. 19, 1015–1052 (2024).

    Article 

    Google Scholar
     

  • Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009).

    Article 

    Google Scholar
     

  • Bryant, S. J., Nuttelman, C. R. & Anseth, K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000).

    Article 

    Google Scholar
     

  • Hillel, A. T. et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl Med. 3, 93ra67 (2011).

    Article 

    Google Scholar
     

  • Shih, H. & Lin, C.-C. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol. Rapid Commun. 34, 269–273 (2013).

    Article 

    Google Scholar
     

  • Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).

    Article 

    Google Scholar
     

  • Nizamoglu, M. et al. An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition. Acta Biomater. 147, 50–62 (2022).

    Article 

    Google Scholar
     

  • Fu, L. et al. Cartilage-like protein hydrogels engineered via entanglement. Nature 618, 740–747 (2023).

    Article 

    Google Scholar
     

  • Smith, P. T. et al. Additive manufacturing of bovine serum albumin-based hydrogels and bioplastics. Biomacromolecules 21, 484–492 (2020).

    Article 

    Google Scholar
     

  • Lim, K. S. et al. New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater. Sci. Eng. 2, 1752–1762 (2016).

    Article 

    Google Scholar
     

  • Soliman, B. G. et al. Stepwise control of crosslinking in a one-pot system for bioprinting of low-density bioinks. Adv. Healthc. Mater. 9, 1901544 (2020).

    Article 

    Google Scholar
     

  • Li, Z. et al. A straightforward synthesis and structure–activity relationship of highly efficient initiators for two-photon polymerization. Macromolecules 46, 352–361 (2013).

    Article 

    Google Scholar
     

  • Ovsianikov, A. et al. Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30, 3787–3794 (2014).

    Article 

    Google Scholar