Life-long functional regeneration of in vivo airway epithelium by the engraftment of airway basal stem cells

  • Vaughan, A. E. et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621–625 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nichane, M. et al. Isolation and 3D expansion of multipotent Sox9+ mouse lung progenitors. Nat. Methods 14, 1205–1212 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kathiriya, J. J., Brumwell, A. N., Jackson, J. R., Tang, X. & Chapman, H. A. Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration. Cell Stem Cell 26, 346–358.e4 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liao, C.-C., Chiu, C.-J., Yang, Y.-H. & Chiang, B.-L. Neonatal lung-derived SSEA-1+ cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience 25, 104262 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Louie, S. M. et al. Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Rep. 39, 110662 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ghosh, M., Ahmad, S., White, C. W. & Reynolds, S. D. Transplantation of airway epithelial stem/progenitor cells: a future for cell-based therapy. Am. J. Resp. Cell Mol. Biol. 56, 1–10 (2016).

    Article 

    Google Scholar
     

  • Fujimura, T. et al. Identifying a lung stem cell subpopulation by combining single-cell morphometrics, organoid culture, and transcriptomics. Stem Cells 41, 809–820 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, A. J. et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Rep. 10, 101–119 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, L. et al. Airway stem cell reconstitution by the transplantation of primary or pluripotent stem cell-derived basal cells. Cell Stem Cell 30, 1199–1216.e7 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Serra, M. et al. Pluripotent stem cell differentiation reveals distinct developmental pathways regulating lung- versus thyroid-lineage specification. Development 144, 3879–3893 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McCauley, K. B. et al. Single-cell transcriptomic profiling of pluripotent stem cell-derived SCGB3A2+ airway epithelium. Stem Cell Rep. 10, 1579–1595 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ikonomou, L. et al. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat. Commun. 11, 635 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Green, M. D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Longmire, T. A. et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10, 398–411 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McCauley, K. B. et al. Efficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling. Cell Stem Cell 20, 844–857.e6 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mou, H. et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19, 217–231 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hawkins, F. J. et al. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell 28, 79–95.e8 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Morrison, S. J., Uchida, N. & Weissman, I. L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Borthwick, D. W., Shahbazian, M., Krantz, Q. T., Dorin, J. R. & Randell, S. H. Evidence for stem-cell niches in the tracheal epithelium. Am. J. Resp. Cell Mol. Biol. 24, 662–670 (2012).

    Article 

    Google Scholar
     

  • Fulcher, M. L. & Randell, S. H. in Epithelial Cell Culture Protocols 2nd edn (eds Fulcher, M. L. & Randell, S. H.) 109–121 (Humana Press, 2012).

  • Roy, M. G. et al. Muc5b is required for airway defence. Nature 505, 412–416 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ostrowski, L. E. et al. Conditional deletion of Dnaic1 in a murine model of primary ciliary dyskinesia causes chronic rhinosinusitis. Am. J. Resp. Cell Mol. Biol. 43, 55–63 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Snouwaert, J. N. et al. An animal model for cystic fibrosis made by gene targeting. Science 257, 1083–1088 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bilodeau, M., Shojaie, S., Ackerley, C., Post, M. & Rossant, J. Identification of a proximal progenitor population from murine fetal lungs with clonogenic and multilineage differentiation potential. Stem Cell Rep. 3, 634–649 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kurmann, A. A. et al. Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell 17, 527–542 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Herriges, M. J. et al. Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice. Cell Stem Cell 30, 1217–1234.e7 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Suzuki, S. et al. Differentiation of human pluripotent stem cells into functional airway basal stem cells. STAR Protoc. 2, 100683 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gentzsch, M. et al. Pharmacological rescue of conditionally reprogrammed cystic fibrosis bronchial epithelial cells. Am. J. Resp. Cell Mol. Biol. 56, 568–574 (2016).

    Article 

    Google Scholar
     

  • Zhang, C. et al. Long-term in vitro expansion of epithelial stem cells enabled by pharmacological inhibition of PAK1-ROCK-Myosin II and TGF-β signaling. Cell Rep. 25, 598–610.e5 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skarnes, W. C., Pellegrino, E. & McDonough, J. A. Improving homology-directed repair efficiency in human stem cells. Methods 164, 18–28 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Longmire, T., Ikonomou, L. & Kotton, D. Mouse ESC differentiation to Nkx2.1+ lung and thyroid progenitors. Bio Protoc. 2, e295 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Dame, K. et al. Thyroid progenitors are robustly derived from embryonic stem cells through transient, developmental stage-specific overexpression of Nkx2-1. Stem Cell Rep. 8, 216–225 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, A. A. et al. Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J. Clin. Invest. 120, 379–389 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar