Search
Close this search box.

Kidney Stone Growth Through The Lens Of Raman Mapping – Scientific Reports – Renal.PlatoHealth.ai

  • Timlin, J. A., Carden, A. & Morris, M. D. Chemical microstructure of cortical bone probed by Raman Transects. Appl. Spectrosc. 53(11), 1429–1435 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carden, A. & Morris, M. D. Application of vibrational spectroscopy to the study of mineralized tissues (review). J. Biomed. Opt 5(3), 259–268. https://doi.org/10.1117/1.429994 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, S. D. et al. Mineralization of dental tissues and caries lesions detailed with raman microspectroscopic imaging. Analyst 146(5), 1705–1713. https://doi.org/10.1039/D0AN01938K (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wentrup-Byrne, E., Armstrong, C. A., Armstrong, R. S. & Collins, B. M. Fourier transform Raman microscopic mapping of the molecular components in a human tooth. J. Raman Spectrosc. 28(2–3), 151–158. https://doi.org/10.1002/(SICI)1097-4555(199702)28:2/3%3c151::AID-JRS71%3e3.0.CO;2-5 (1997).

    <a data-track=”click” rel=”nofollow noopener” data-track-label=”10.1002/(SICI)1097-4555(199702)28:2/33.0.CO;2-5″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4555%28199702%2928%3A2%2F3%3C151%3A%3AAID-JRS71%3E3.0.CO%3B2-5″ aria-label=”Article reference 4″ data-doi=”10.1002/(SICI)1097-4555(199702)28:2/33.0.CO;2-5″>Article 
    ADS 
    CAS 

    Google Scholar
     

  • Castiglione, V. et al. Raman chemical imaging, a new tool in kidney stone structure analysis: Case-study and comparison to fourier transform infrared spectroscopy. PLoS ONE 13(8), e0201460. https://doi.org/10.1371/journal.pone.0201460 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivaguru, M. et al. Human kidney stones: A natural record of universal biomineralization. Nat. Rev. Urol. 18(7), 404–432. https://doi.org/10.1038/s41585-021-00469-x (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivaguru, M. et al. Geobiology reveals how human kidney stones dissolve in vivo. Sci. Rep. 8(1), 13731. https://doi.org/10.1038/s41598-018-31890-9 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todorov, L. G. et al. GeoBioMed perspectives on kidney stone recurrence from the reactive surface area of SWL-derived particles. Sci. Rep. 12(1), 18371. https://doi.org/10.1038/s41598-022-23331-5 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarse, C. A. et al. Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol. 4(1), 15. https://doi.org/10.1186/1471-2490-4-15 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzoor, M. A. P., Agrawal, A. K., Singh, B., Mujeeburahiman, M. & Rekha, P.-D. Morphological characteristics and microstructure of kidney stones using synchrotron radiation μCT reveal the mechanism of crystal growth and aggregation in mixed stones. PLOS ONE 14(3), e0214003. https://doi.org/10.1371/journal.pone.0214003 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corrales, M., Doizi, S., Barghouthy, Y., Traxer, O. & Daudon, M. Classification of stones according to Michel Daudon: A narrative review. Eur. Urol. Focus 7(1), 13–21. https://doi.org/10.1016/j.euf.2020.11.004 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, J. C., Lingeman, J. E., Daudon, M. & Bazin, D. Using micro computed tomographic imaging for analyzing kidney stones. Comptes Rendus. Chimie 25(S1), 1–12. https://doi.org/10.5802/crchim.89 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williams, J. C., Lingeman, J. E., Coe, F. L., Worcester, E. M. & Evan, A. P. Micro-CT imaging of Randall’s plaques. Urolithiasis 43(1), 13–17. https://doi.org/10.1007/s00240-014-0702-z (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, J. C., McAteer, J. A., Evan, A. P. & Lingeman, J. E. Micro-computed tomography for analysis of urinary calculi. Urol. Res. 38(6), 477–484. https://doi.org/10.1007/s00240-010-0326-x (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, J. C., Worcester, E. & Lingeman, J. E. What can the microstructure of stones tell us?. Urolithiasis 45(1), 19–25. https://doi.org/10.1007/s00240-016-0944-z (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Keller, E. X. et al. Fragments and dust after holmium laser lithotripsy with or without “Moses technology”: How are they different?. J. Biophotonics 12(4), e201800227. https://doi.org/10.1002/jbio.201800227 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daudon, M. et al. Examination of Whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J. Appl. Crystallogr. 42(1), 109–115. https://doi.org/10.1107/S0021889808041277 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Al-Atar, U. et al. Mechanism of calcium oxalate monohydrate kidney stones formation: Layered spherulitic growth. Chem. Mater. 22(4), 1318–1329. https://doi.org/10.1021/cm901751g (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gleeson, M. et al. Kidney stone classification using multimodal multiphoton microscopy. ACS Photonics 10(10), 3594–3604. https://doi.org/10.1021/acsphotonics.3c00651 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, J. C., Williams, J. C., Evan, A. P., Condon, K. W. & Sommer, A. J. Analysis of urinary calculi using an infrared microspectroscopic surface reflectance imaging technique. Urol. Res. 35(1), 41–48. https://doi.org/10.1007/s00240-006-0077-x (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazin, D. et al. Combining field effect scanning electron microscopy, deep UV fluorescence, Raman, classical and synchrotron radiation fourier transform infra-red spectroscopy in the study of crystal-containing kidney biopsies. Comptes Rendus Chimie 19(11), 1439–1450. https://doi.org/10.1016/j.crci.2015.03.001 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Valido, H. et al. Calcium oxalate kidney stones, where is the organic matter?: A synchrotron based infrared microspectroscopy study. J. Biophotonics https://doi.org/10.1002/jbio.202000303 (2020).

    Article 

    Google Scholar
     

  • Sofińska-Chmiel, W. et al. Chemical studies of multicomponent kidney stones using the modern advanced research methods. Molecules 28(16), 6089. https://doi.org/10.3390/molecules28166089 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daudon, M., Protat, M. F., Reveillaud, R. J. & Jaeschke-Boyer, H. Infrared spectrometry and Raman microprobe in the analysis of urinary calculi. Kidney Int. 23(6), 842–850. https://doi.org/10.1038/ki.1983.104 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cloutier, J., Villa, L., Traxer, O. & Daudon, M. Kidney stone analysis: “Give Me Your Stone, I Will Tell You Who You Are!”. World J. Urol. 33(2), 157–169. https://doi.org/10.1007/s00345-014-1444-9 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Estepa, L. & Daudon, M. Contribution of Fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy 3(5), 347–369. https://doi.org/10.1002/(SICI)1520-6343(1997)3:5%3c347::AID-BSPY3%3e3.0.CO;2-# (1997).

    <a data-track=”click” rel=”nofollow noopener” data-track-label=”10.1002/(SICI)1520-6343(1997)3:53.0.CO;2-#” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291520-6343%281997%293%3A5%3C347%3A%3AAID-BSPY3%3E3.0.CO%3B2-%23″ aria-label=”Article reference 26″ data-doi=”10.1002/(SICI)1520-6343(1997)3:53.0.CO;2-#”>Article 
    CAS 

    Google Scholar
     

  • Tamosaityte, S. et al. Raman spectroscopy as a non-destructive tool to determine the chemical composition of urinary sediments. Comptes Rendus. Chimie 25(S1), 73–82. https://doi.org/10.5802/crchim.121 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lucas, I. T., Bazin, D. & Daudon, M. Raman opportunities in the field of pathological calcifications. Comptes Rendus. Chimie 25(S1), 83–103. https://doi.org/10.5802/crchim.110 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cui, X. et al. Analysis and classification of kidney stones based on Raman spectroscopy. Biomed. Opt. Express. 9(9), 4175–4183. https://doi.org/10.1364/BOE.9.004175 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golcuk, K. et al. Is photobleaching necessary for Raman imaging of bone tissue using a green laser?. Biochim. Biophys. Acta Biomembr. 1758(7), 868–873. https://doi.org/10.1016/j.bbamem.2006.02.022 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yakubovskaya, E., Zaliznyak, T., Martínez Martínez, J. & Taylor, G. T. Tear down the fluorescent curtain: A new fluorescence suppression method for Raman microspectroscopic analyses. Sci. Rep. 9(1), 15785. https://doi.org/10.1038/s41598-019-52321-3 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petit, I. et al. Vibrational signatures of calcium oxalate polyhydrates. ChemistrySelect 3(31), 8801–8812. https://doi.org/10.1002/slct.201801611 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ulian, G., Valdrè, G., Corno, M. & Ugliengo, P. The vibrational features of hydroxylapatite and Type A carbonated apatite: A first principle contribution. Am. Mineralogist 98(4), 752–759. https://doi.org/10.2138/am.2013.4315 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Casciani, F. & Condrate, R. A. Sr. The vibrational spectra of brushite, CaHPO4·2H2O. Spectrosc. Lett. 12(10), 699–713. https://doi.org/10.1080/00387017908069196 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stefov, V., Šoptrajanov, B., Kuzmanovski, I., Lutz, H. D. & Engelen, B. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate. J. Mol. Struct. 752(1), 60–67. https://doi.org/10.1016/j.molstruc.2005.05.040 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zellelow, A. Z., Kim, K.-H., Sours, R. E. & Swift, J. A. Solid-state dehydration of uric acid dihydrate. Cryst. Growth Des. 10(1), 418–425. https://doi.org/10.1021/cg9010218 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Izatulina, A. R., Gurzhiy, V. V., Krzhizhanovskaya, M. G., Chukanov, N. V. & Panikorovskii, T. L. Thermal behavior and phase transition of uric acid and its dihydrate form, the common biominerals uricite and tinnunculite. Minerals 9(6), 373. https://doi.org/10.3390/min9060373 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Presores, J. B. & Swift, J. A. Solution-mediated phase transformation of uric acid dihydrate. CrystEngComm 16(31), 7278–7284. https://doi.org/10.1039/C4CE00574K (2014).

    Article 
    CAS 

    Google Scholar
     

  • Frincu, M. C., Fogarty, C. E. & Swift, J. A. Epitaxial relationships between uric acid crystals and mineral surfaces: A factor in urinary stone formation. Langmuir 20(16), 6524–6529. https://doi.org/10.1021/la049091u (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. & Königsberger, E. Solubility equilibria in the uric acid-sodium urate–water system. Thermochim. Acta 310(1), 237–242. https://doi.org/10.1016/S0040-6031(97)00230-X (1998).

    Article 
    CAS 

    Google Scholar
     

  • Königsberger, E., Tromans, A., May, P. M. & Hefter, G. Solubility of calcium oxalate monohydrate in concentrated electrolyte solutions. J. Chem. Eng. Data 66(1), 840–847. https://doi.org/10.1021/acs.jced.0c00925 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ibis, F. et al. A combined experimental and modelling study on solubility of calcium oxalate monohydrate at physiologically relevant pH and temperatures. Crystals 10(10), 924. https://doi.org/10.3390/cryst10100924 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gridley, C. M., Sourial, M. W., Lehman, A. & Knudsen, B. E. Medical dissolution therapy for the treatment of uric acid nephrolithiasis. World J. Urol. 37(11), 2509–2515. https://doi.org/10.1007/s00345-019-02688-9 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vermeulen, C. W. & Fried, F. A. Observations on dissolution of uric acid calculi. J. Urol. 94(3), 293–296. https://doi.org/10.1016/S0022-5347(17)63618-8 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pramanik, R., Asplin, J. R., Jackson, M. E. & Williams, J. C. Protein content of human apatite and brushite kidney stones: Significant correlation with morphologic measures. Urol. Res. 36(5), 251–258. https://doi.org/10.1007/s00240-008-0151-7 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, W. E., Patel, P. R. & Chow, L. C. Formation of CaHPO4 2H2O from enamel mineral and its relationship to caries mechanism. J. Dent. Res. 54(3), 475–481. https://doi.org/10.1177/00220345750540031001 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, P. W. Phase relationships in the ternary system CaO─P2O5─H2O at 25°C. J. Am. Ceram. Soc. 75(1), 17–22. https://doi.org/10.1111/j.1151-2916.1992.tb05435.x (1992).

    Article 
    CAS 

    Google Scholar
     

  • Abbona, F., Christensson, F., Angela, M. F. & Madsen, H. E. L. Crystal habit and growth conditions of brushite, CaHPO42H2O. J. Cryst. Growth 131(3), 331–346. https://doi.org/10.1016/0022-0248(93)90183-W (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siener, R., Netzer, L. & Hesse, A. Determinants of brushite stone formation: A case-control study. PLOS ONE 8(11), e78996. https://doi.org/10.1371/journal.pone.0078996 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bazin, D. et al. Hyperoxaluria Is related to whewellite and hypercalciuria to weddellite: What happens when crystalline conversion occurs?. Comptes Rendus Chimie 19(11), 1492–1503. https://doi.org/10.1016/j.crci.2015.12.011 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sarigul, N., Korkmaz, F. & Kurultak, İ. A new artificial urine protocol to better imitate human urine. Sci. Rep. 9(1), 20159. https://doi.org/10.1038/s41598-019-56693-4 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daudon, M., Jungers, P., Bazin, D. & Williams, J. C. Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis 46(5), 459–470. https://doi.org/10.1007/s00240-018-1043-0 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werness, P. G., Bergert, J. H. & Smith, L. H. Crystalluria. J. Cryst. Growth 53(1), 166–181. https://doi.org/10.1016/0022-0248(81)90063-4 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Frochot, V. et al. Advances in the identification of calcium carbonate urinary crystals. Clin. Chim. Acta 515, 1–4. https://doi.org/10.1016/j.cca.2020.12.024 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hourlier, D. Thermal decomposition of calcium oxalate: Beyond appearances. J. Therm. Anal. Calorim. 136(6), 2221–2229. https://doi.org/10.1007/s10973-018-7888-1 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rak, J., Skurski, P., Gutowski, M. & Błażejowski, J. Thermodynamics of the thermal decomposition of calcium oxalate monohydrate examined theoretically. J. Therm. Anal. Calorim. 43(1), 239–246. https://doi.org/10.1007/bf02635991 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Izatulina, A. R. et al. Hydrated calcium oxalates: Crystal structures, thermal stability, and phase evolution. Cryst. Growth Des. 18(9), 5465–5478. https://doi.org/10.1021/acs.cgd.8b00826 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Echigo, T., Kimata, M., Kyono, A., Shimizu, M. & Hatta, T. Re-investigation of the crystal structure of whewellite [Ca(C2O4)·H2O] and the dehydration mechanism of caoxite [Ca(C2O4)·3H2O]. Mineralogical Mag. 69(1), 77–88. https://doi.org/10.1180/0026461056910235 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Millan, A. Crystal growth shape of whewellite polymorphs: Influence of structure distortions on crystal shape. Cryst. Growth Des. 1(3), 245–254. https://doi.org/10.1021/cg0055530 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, J. W., Ghani, K. R., Roberts, W. W. & Matzger, A. J. Near-infrared absorption coefficients in kidney stone minerals and their relation to crystal structure. J. Phys. Chem. C 127(1), 759–767. https://doi.org/10.1021/acs.jpcc.2c07475 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hajir, M., Graf, R. & Tremel, W. Stable amorphous calcium oxalate: Synthesis and potential intermediate in biomineralization. Chem. Commun. 50(49), 6534–6536. https://doi.org/10.1039/C4CC02146K (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ihli, J. et al. Precipitation of amorphous calcium oxalate in aqueous solution. Chem. Mater. 27(11), 3999–4007. https://doi.org/10.1021/acs.chemmater.5b01642 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Awonusi, A., Morris, M. D. & Tecklenburg, M. M. J. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif. Tissue Int. 81(1), 46–52. https://doi.org/10.1007/s00223-007-9034-0 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prywer, J., Sadowski, R. R. & Torzewska, A. Aggregation of struvite, carbonate apatite, and proteus mirabilis as a key factor of infectious urinary stone formation. Cryst. Growth Des. 15(3), 1446–1451. https://doi.org/10.1021/cg5018032 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Qin, L., Putnis, C. V. & Wang, L. Facet-specific dissolution-precipitation at struvite-water interfaces. Cryst. Growth Des. https://doi.org/10.1021/acs.cgd.1c00400 (2021).

    Article 

    Google Scholar
     

  • Kurtulus, G. & Tas, A. C. Transformations of neat and heated struvite (MgNH4PO46H2O). Mater. Lett. 65(19), 2883–2886. https://doi.org/10.1016/j.matlet.2011.06.086 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Racek, M., Racek, J. & Hupáková, I. Scanning electron microscopy in analysis of urinary stones. Scand. J. Clin. Lab. Investig. 79(3), 208–217. https://doi.org/10.1080/00365513.2019.1578995 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Frank, D. S., Aldoukhi, A. H., Roberts, W. W., Ghani, K. R. & Matzger, A. J. Polymer-mineral composites mimic human kidney stones in laser lithotripsy experiments. ACS Biomater. Sci. Eng. 5(10), 4970–4975. https://doi.org/10.1021/acsbiomaterials.9b01130 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frost, R. L., Weier, M. L. & Erickson, K. L. Thermal decomposition of struvite. J. Therm. Anal. Calorim. 76(3), 1025–1033. https://doi.org/10.1023/B:JTAN.0000032287.08535.b3 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bayuseno, A. P. & Schmahl, W. W. thermal decomposition of struvite in water: Qualitative and quantitative mineralogy analysis. Environ. Technol. 41(27), 3591–3597. https://doi.org/10.1080/09593330.2019.1615558 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ames, B. N., Cathcart, R., Schwiers, E. & Hochstein, P. uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. 78(11), 6858–6862. https://doi.org/10.1073/pnas.78.11.6858 (1981).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simic, M. G. & Jovanovic, S. V. Antioxidation mechanisms of uric acid. J. Am. Chem. Soc. 111(15), 5778–5782. https://doi.org/10.1021/ja00197a042 (1989).

    Article 
    CAS 

    Google Scholar