Search
Close this search box.

Investigation and characterization of changes in potato peels by thermochemical acidic pre-treatment for extraction of various compounds – Scientific Reports

  • Salam, M. et al. Exploring the role of Black Soldier Fly Larva technology for sustainable management of municipal solid waste in developing countries. Environ. Technol. Innov. 24, 101934–101987. https://doi.org/10.1016/j.eti.2021.101934 (2021).

    Article 

    Google Scholar
     

  • Siddiqua, A., Hahladakis, J. N. & Al-Attiya, W. A. K. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 29, 58514–58536. https://doi.org/10.1007/s11356-022-21578-z (2022).

    Article 

    Google Scholar
     

  • Mushtaq, Q., Irfan, M., Tabssum, F. & IqbalQazi, J. Potato peels: A potential food waste for amylase production. J. of Food Process Eng. 40, e12512-12519. https://doi.org/10.1111/jfpe.12512 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Irfan, M., Mushtaq, Q., Tabssum, F., Shakir, H. A. & Qazi, J. I. Carboxymethylcellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology. AMB Express. 7, 1–9. https://doi.org/10.1186/s13568-017-0331-3 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chohan, N. A., Aruwajoye, G. S., Sewsynker-Sukai, Y. & Kana, E. G. Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment. Renew. Energ. 146, 1031–1040. https://doi.org/10.1016/j.renene.2019.07.042 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sawicka, B., Skiba, D. & Barbas, P. Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals 1st edn, 19–37 (Springer, 2022).

    Book 

    Google Scholar
     

  • FAO, SAVE FOOD. Global initiative on food loss and waste reduction (2015). http://www.fao.org/3/ai4068e.pdf. 25, p. 2018.

  • FAO. Food Wastage Footprint: Impacts on Natural Resources: Summary Report (2013). http://site.ebrary.com/id/10815985

  • FAO (2013, 2016). Agriculture Organization of the United Nations Statistics Division. Economic and Social Development Department, Rome, Italy. http://faostat3.fao.org/home/E. Accessed 31 December 2016.

  • Schieber, A., Stintzing, F. C. & Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001(12), 401–413. https://doi.org/10.1016/S0924-2244(02)00012-2 (2001).

    Article 

    Google Scholar
     

  • Arapoglou, D., Varzakas, T., Vlyssides, A. & Israilides, C. J. W. M. Ethanol production from potato peel waste (PPW). Waste Manag. 30, 1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abeyrathne, E. D. N. S., Nam, K., Huang, X. & Ahn, D. U. Plant-and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: a review. Antioxidants. 11, 1025–1043. https://doi.org/10.3390/antiox11051025 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Hadary, A. R. E., Sulieman, A. M. & El-Shorbagy, G. A. Comparative effects of hibiscus leaves and potato peel extracts on characteristics of fermented orange juice. J. Food Qual. Hazards Control. 2023(10), 39–50. https://doi.org/10.18502/jfqhc.10.1.11988 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tlay, R. H., Abdul-Abbas, S. J., El-Maksoud, A. A. A., Altemimi, A. B. & Abedelmaksoud, T. G. Functional biscuits enriched with potato peel powder: Physical, chemical, rheological, and antioxidants properties. Food Syst. 6, 53–63. https://doi.org/10.21323/2618-9771-2023-6-1-53-63 (2023).

    Article 

    Google Scholar
     

  • Brahmi, F. et al. Optimization of conventional extraction parameters for recovering phenolic compounds from potato (Solanumtuberosum L.) peels and their application as an antioxidant in yogurt formulation. Antioxidants 11, 1401–1422. https://doi.org/10.3390/antiox11071401 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Andrade Lima, M., Andreou, R., Charalampopoulos, D. & Chatzifragkou, A. Supercritical carbon dioxide extraction of phenolic compounds from potato (Solanum tuberosum) peels. Appl. Sci. 11, 3410–3428. https://doi.org/10.3390/app11083410 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jimenez-Champi, D., Romero-Orejon, F. L., Moran-Reyes, A., Muñoz, A. M. & Ramos-Escudero, F. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: A review. CyTA-J. Food 21, 418–432. https://doi.org/10.1080/19476337.2023.2213746 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Martínez, B., Coelho, E., Gullón, B., Yáñez, R. & Domingues, L. Potato peels waste as a sustainable source for biotechnological production of biofuels: Process optimization. Waste Manag. 155, 320–328. https://doi.org/10.1016/j.wasman.2022.11.007 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soltaninejad, A., Jazini, M. & Karimi, K. Sustainable bioconversion of potato peel wastes into ethanol and biogas using organosolv pretreatment. Chemosphere. 2022(291), 133003. https://doi.org/10.1016/j.chemosphere.2021.133003 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sujeeta, K. M., Mehta, S. & Sihag, K. Optimization of conditions for bioethanol production from potato peel waste. Int. J. Chem. Stud. 6, 2021–2026 (2018).


    Google Scholar
     

  • Maldonado, A. F. S., Mudge, E., Ganzle, M. G. & Schieber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res. Int. 65, 27–34 (2014).

    Article 

    Google Scholar
     

  • Chen, M. S., Zhao, Y. & Yu, S. J. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 172, 543–550 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, P. P. & Saldana, M. D. A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 44, 2452–2458 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Alvarez, V. H., Cahyadi, J., Xu, D. Y. & Saldana, M. D. A. Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. J. Supercrit. Fluids. 90, 8–17 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lantero, O. J., Li, M., & Shetty, J. K. Genencor International Inc. Process for conversion of granular starch to ethanol (2011). U.S. Patent 7968318 (filed September 15, 2011).

  • Betiku, E. & Taiwo, A. E. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzatevis- a-vis response surface methodology and artificial neural network. Renew. Energy 74, 87–94. https://doi.org/10.1016/j.renene.2014.07.054 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Maiti, B., Rathore, A., Srivastava, S., Shekhawat, M. & Srivastava, P. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm. Appl. Microbiol. Biotechnol. 90, 385–395. https://doi.org/10.1007/s00253-011-3158-x (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdulgader, M., Yu, J., Zinatizadeh, A. A., Williams, P. & Rahimi, Z. Process analysis and optimization of single stage flexible fibre biofilm reactor treating milk processing industrial wastewater using response surface methodology (RSM). Chem. Eng. Res. Des. 149, 169–181. https://doi.org/10.1016/j.cherd.2019.07.011 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yılmaz, Ş & Şahan, T. Utilization of pumice for improving biogas production from poultry manure by anaerobic digestion: A modeling and process optimization study using response surface methodology. Biomass Bioenerg. 2020(138), 105601–105611. https://doi.org/10.1016/j.biombioe.2020.105601 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhary, A. et al. Pomegranate peels waste hydrolyzate optimization by Response Surface Methodology for Bioethanol production. Saudi J. Biol. Sci. 2021(28), 4867–4875. https://doi.org/10.1016/j.sjbs.2021.06.081 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dahunsi, S. O. Liquefaction of pineapple peel: Pretreatment and process optimization. Energy 185, 1017–1031. https://doi.org/10.1016/j.energy.2019.07.123 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Saleem, A. et al. Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Convers. Biorefin. 12, 1513–1524. https://doi.org/10.1007/s13399-020-01117-x (2020).

    Article 
    CAS 

    Google Scholar
     

  • Aissi, F. Z., El Hadi, D., Megateli, S. & Ketfi, S. Statistical optimization of pretreatment of orange processing waste using response surface methodology for bioethanol production. Energy Sources A: Recov. Util. Environ. Eff. 43, 1–15. https://doi.org/10.1080/15567036.2021.1967519 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Joly, N., Souidi, K., Depraetere, D., Wils, D. & Martin, P. Potato by-products as a source of natural Chlorogenic acids and phenolic compounds: Extraction, characterization, and antioxidant capacity. Molecules 26, 177–192. https://doi.org/10.3390/molecules26010177 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez-Martínez, B., Gullón, B. & Yáñez, R. Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants. 10, 1630. https://doi.org/10.3390/antiox10101630 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem, M. A. et al. Valorization of by-products Derived from Onions and Potato: Extraction Optimization, Metabolic Profile, Outstanding Bioactivities, and Industrial Applications. Waste Biomass Valorization 14, 1–36. https://doi.org/10.1007/s12649-022-02027-x (2023).

    Article 
    CAS 

    Google Scholar
     

  • AOAC. Official Methods of Analysis Association of Official Analytical Chemists International 19th edn. (Maryland, 2005).


    Google Scholar
     

  • Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).

    Article 
    CAS 

    Google Scholar
     

  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    Article 
    CAS 

    Google Scholar
     

  • Sanz, V. C., Mena, M. L., González-Cortés, A., Yanez-Sedeno, P. & Pingarrón, J. M. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal. Chim. Acta. 528, 1–8. https://doi.org/10.1016/j.aca.2004.10.007 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Irfan, M. et al. Statistical optimization of saccharification of alkali pretreated wheat straw for bioethanol production. Waste Biomass Valorization. 7, 1389–1396. https://doi.org/10.1007/s12649-016-9540-2 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kpanja, E. J., Duru, S., Omage, J. J., Sekoni, A. A. & Gonjoh, P. T. Proximate composition, anti–nutritional factors and the effect of Irish potato (Solanum tuberosum L.) peels on the performance and carcass characteristics of broiler chickens. Niger. J. Anim. Sci. 21(2), 214–222 (2019).


    Google Scholar
     

  • Badr, S. A. & El-Waseif, M. A. Effect of dietary fiber in potato peels powder addition as fat replacer on quality char-acteristics and energy value of beef meatballs. J. Biol. Chem. Environ. Sci. 13(1), 145–160 (2018).


    Google Scholar
     

  • Adegunloye, D. V. & Oparinde, T. C. Effects of fermentation on the proximate composition of Irish (Solanum tuberosum) and sweet potato (Ipomoea batatas) peels. Adv. Microbiol. 7(7), 565–574 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Maxwell, O. I., Chinwuba, U. B. & Onyebuchukwu, M. G. Protein enrichment of potato peels using Saccharomyces cerevisiae via solid-state fermentation process. Adva. Chem. Eng. Sci. 9(1), 99–108 (2018).

    Article 

    Google Scholar
     

  • Onuguh, I. C., Ikhuoria, E. U. & Obibuzo, J. U. Assessing the potentials of some agro-waste peels through proximate analysis. Int. J. Agric. Anim. Prod. 2(02), 1–6 (2022).


    Google Scholar
     

  • Rowayshed, G., Sharaf, A. M., El-Faham, S. Y., Ashour, M. & Zaky, A. A. Utilization of potato peels extract as source of phytochemicals in biscuits. J. Basic Appl. Res. Int. 8(3), 190–201 (2015).


    Google Scholar
     

  • Khawla, B. J. et al. Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Ind. Crops Prod. 52, 144–149 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, G. Y. et al. Evaluation of structural, functional, and anti-oxidant potential of differentially extracted polysaccharides from potatoes peels. Int. J. Biol. Macromol. 129, 778–785 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malakar, B., Das, D. & Mohanty, K. Optimization of glucose yield from potato and sweet lime peel waste through different pre-treatment techniques along with enzyme assisted hydrolysis towards liquid biofuel. Renew. Energy 145, 2723–2732 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Atitallah, I. B. et al. On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. Bioresour. Technol. 289, 121614 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mushtaq, Q., Joly, N., Martin, P. & Qazi, J. I. Optimization of alkali treatment for production of fermentable sugars and phenolic compounds from potato peel waste using topographical characterization and FTIR spectroscopy. Molecules. 28, 7250–7269. https://doi.org/10.3390/molecules28217250 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharyya, S., Chakraborty, S., Datta, S., Drioli, E. & Bhattacharjee, C. Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization. Environ. Technol. 34, 1077–1084. https://doi.org/10.1080/09593330.2012.733965 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Achinas, S., Li, Y., Achinas, V. & Euverink, G. J. W. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies 12, 2311–2326. https://doi.org/10.3390/en12122311 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ben Taher, I., Fickers, P., Chniti, S. & Hassouna, M. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog. 33, 397–406. https://doi.org/10.1002/btpr.2427 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, M. M., Ramesh, A., Rao, G. P. C. & Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater. 129(1–3), 123–129 (2006).

    PubMed 

    Google Scholar
     

  • Ahmed, M. J. K., Ahmaruzzaman, M. & Reza, R. A. Lignocellulosic-derived modified agricultural waste: Development, characterisation and implementation in sequestering pyridine from aqueous solutions. J. Colloid Interface Sci. 428, 222–234 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J. & Ismadji, S. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. J. Hazard. Mater. 146(1–2), 237–242 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property. Inorg. Chem. 46(16), 6675–6682 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouhadjra, K., Lemlikchi, W. & Oubagha, N. Valorisation des pelures de pommes de terre pour le traitement d’une solution aqueuse contenant un colorant textile (Reactive Blue 72). J. Water Environ. Sci. 1, 219–229 (2017).


    Google Scholar
     

  • Chakraborty, M., Miao, C., McDonald, A. & Chen, S. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel 95, 63–70 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kandhola, G. et al. Maximizing production of cellulose nanocrystals and nanofibers from pre-extracted loblolly pine kraft pulp: A response surface approach. Bioresour. Bioprocess. 7, 1–16 (2020).

    Article 

    Google Scholar
     

  • Bouhadjra, K., Lemlikchi, W., Ferhati, A. & Mignard, S. Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder. Sci. Rep. 11, 2090–2099. https://doi.org/10.1038/s41598-020-79069-5 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Azazy, M. et al. Potato peels as an adsorbent for heavy metals from aqueous solutions: Eco-structuring of a green adsorbent operating Plackett-Burman design. J. Chem. 2019(2019), 1–14 (2019).

    Article 

    Google Scholar
     

  • Hassan, M. L., Mathew, A. P., Hassan, E. A. & Oksman, K. Effect of pretreatment of bagasse pulp on properties of isolated nanofibers and nanopaper sheets. Wood Fiber Sci. 2010, 362–376 (2010).


    Google Scholar
     

  • Gong, J., Li, J., Xu, J., Xiang, Z. & Mo, L. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv. 7(53), 33486–33493 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fang, W. et al. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization. Bioresour. Technol. 168, 167–172 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S., Lin, A. H. M., Han, Q. & Xu, Q. Evaluation of direct ultrasound-assisted extraction of phenolic compounds from potato peels. Processes. 8, 1665–1679. https://doi.org/10.3390/pr8121665 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frontuto, D. et al. Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food Bioprocess Technol. 12, 1708–1720. https://doi.org/10.1007/s11947-019-02320-z (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sanusi, I. et al. A novel autoclave-assisted nanoparticle pre-treatment for improved sugar recovery from potato peel waste: process optimisation, nanoparticle recyclability and bioethanol production. Biomass Convers. Biorefin. 12, 1–13. https://doi.org/10.1007/s13399-022-03574-y (2022).

    Article 
    CAS 

    Google Scholar
     

  • Atitallah, I., Antonopoulou, G., Ntaikou, I., Alexandropoulou, M., Nasri, M., Mechichi, T., Lyberatos, G. Potato peels waste as feedstock for bioethanol production: a comparison of chemical. Therm. Enzym. Pretreatm. 2021, 1–15. https://www.researchgate.net/publication/350801701.

  • Utekar, P. G., Kininge, M. M. & Gogate, P. R. Intensification of delignification and enzymatic hydrolysis of orange peel waste using ultrasound for enhanced fermentable sugar production. Chem. Eng. Process. Process Intensif. 168, 108556–108567. https://doi.org/10.1016/j.cep.2021.108556 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dutta, A., Kininge, M. M. & Gogate, P. R. Intensification of delignification and subsequent hydrolysis of sustainable waste as banana peels for the HMF production using ultrasonic irradiation. Chem. Eng. Process. Process Intensif. 183, 109247. https://doi.org/10.1016/j.cep.2022.109247 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jusoh, N. A., Karim, L., & Omar, S. R. Pretreatment and enzymatic saccharification of mango peel for sugar production. AJFAS. 1, 1–15 (2020).http://myjms.mohe.gov.my/index.php/ajfas

  • Tripathy, A., Patel, M. K. & Chakraborty, S. Microbial production of dextran using pineapple waste extract: a two-step statistical optimization of submerged fermentation conditions and structural characterization. Biotechnol. Bioprocess Eng. 2024, 1–17 (2024).


    Google Scholar