Intranasal influenza-vectored vaccine expressing pneumococcal surface protein A protects against Influenza and Streptococcus pneumoniae infections

  • Naucler, P., Darenberg, J., Morfeldt, E., Örtqvist, Å. & Henriques Normark, B. Contribution of host, bacterial factors and antibiotic treatment to mortality in adult patients with bacteraemic pneumococcal pneumonia. Thorax 68, 571 LP–571579 (2013).

    Article 

    Google Scholar
     

  • Cartwright, K. Pneumococcal disease in western Europe: burden of disease, antibiotic resistance and management. Eur. J. Pediatr. 161, 188–195 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Troeger, C. et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 18, 1191–1210 (2018).

    Article 

    Google Scholar
     

  • Peyrani, P., Mandell, L., Torres, A. & Tillotson, G. S. The burden of community-acquired bacterial pneumonia in the era of antibiotic resistance. Expert Rev. Respir. Med 13, 139–152 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. Pneumonia in children. https://www.who.int/news-room/fact-sheets/detail/pneumonia (2022).

  • Ganaie, F. et al. A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 11, e00937–20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasparini, R., Amicizia, D., Lai, P. L. & Panatto, D. Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly. Hum. Vaccin Immunother. 8, 21–28 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bouvier, N. M. & Palese, P. The biology of influenza viruses. Vaccine 26, D49–D53 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knipe, D. M. & Howley, P. Fields Virology. (Wolters Kluwer Health, 2013).

  • Paget, J. et al. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J. Glob. Health 9, 20421 (2019).

    Article 

    Google Scholar
     

  • Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Taubenberger, J. K. & Morens, D. M. The 1918 Influenza Pandemic and Its Legacy. Cold Spring Harb. Perspect. Med. 10, a038695 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussell, T., Wissinger, E. & Goulding, J. Bacterial complications during pandemic influenza infection. Future Microbiol 4, 269–272 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Metersky, M. L., Masterton, R. G., Lode, H., File, T. M. Jr & Babinchak, T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int. J. Infect. Dis. 16, e321–e331 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • MacIntyre, C. R. et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect. Dis. 18, 637 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morens, D. M., Taubenberger, J. K. & Fauci, A. S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J. Infect. Dis. 198, 962–970 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sender, V., Hentrich, K. & Henriques-Normark, B. Virus-induced changes of the respiratory tract environment promote secondary infections with streptococcus pneumoniae. Front Cell Infect. Microbiol 11, 199 (2021).

    Article 

    Google Scholar
     

  • Sparrow, E. et al. Global production capacity of seasonal and pandemic influenza vaccines in 2019. Vaccine 39, 512–520 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reperant, L. A., Rimmelzwaan, G. F. & Osterhaus, A. D. M. E. Advances in influenza vaccination. F1000Prime Rep. 6, 47 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soema, P. C., Kompier, R., Amorij, J.-P. & Kersten, G. F. A. Current and next generation influenza vaccines: Formulation and production strategies. Eur. J. Pharm. Biopharm. 94, 251–263 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houser, K. & Subbarao, K. Influenza vaccines: Challenges and solutions. Cell Host Microbe 17, 295–300 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ping, J. et al. Development of high-yield influenza A virus vaccine viruses. Nat. Commun. 6, 8148 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Krammer, F. et al. Influenza. Nat. Rev. Dis. Prim. 4, 3 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki, M. et al. Serotype-specific effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumococcal pneumonia in adults aged 65 years or older: a multicentre, prospective, test-negative design study. Lancet Infect. Dis. 17, 313–321 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, Y. et al. Immunogenicity and safety of a 23-valent pneumococcal polysaccharide vaccine in Chinese healthy population aged >2 years: A randomized, double-blinded, active control, phase III trial. Hum. Vaccin Immunother. 11, 2425–2433 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, T. et al. Incidence of invasive pneumococcal disease in children with commercial insurance or Medicaid coverage in the United States before and after the introduction of 7- and 13-valent pneumococcal conjugate vaccines during 1998–2018. BMC Public Health 22, 1677 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, N. J. et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect. Dis. 14, 839–846 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, Q., Shi, W., Yu, D. & Yao, K. Epidemiology of non-vaccine serotypes of Streptococcus pneumoniae before and after universal administration of pneumococcal conjugate vaccines. Hum. Vaccin Immunother. 17, 5628–5637 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunne, E. M. et al. Effect of pneumococcal vaccination on nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Fijian children. J. Clin. Microbiol 50, 1034–1038 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonten, M. J. M. et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N. Engl. J. Med. 372, 1114–1125 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moffitt, K. & Malley, R. Rationale and prospects for novel pneumococcal vaccines. Hum. Vaccin Immunother. 12, 383–392 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Moffitt, K. L. & Malley, R. Next generation pneumococcal vaccines. Curr. Opin. Immunol. 23, 407–413 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darrieux, M., Goulart, C., Briles, D. & Leite, L. CdeC. Current status and perspectives on protein-based pneumococcal vaccines. Crit. Rev. Microbiol 41, 190–200 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malley, R. & Anderson, P. W. Serotype-independent pneumococcal experimental vaccines that induce cellular as well as humoral immunity. Proc. Natl Acad. Sci. 109, 3623–3627 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pichichero, M. E., Khan, M. N. & Xu, Q. Next generation protein based Streptococcus pneumoniae vaccines. Hum. Vaccin Immunother. 12, 194–205 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Alghamdi, S. et al. Pneumococcal surface protein A: A promising candidate for the next generation of pneumococcal vaccines. Cell Mol. Biol. 67, 289–298 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Crain, M. J. et al. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect. Immun. 58, 3293–3299 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croney, C. M., Coats, M. T., Nahm, M. H., Briles, D. E. & Crain, M. J. PspA family distribution, unlike capsular serotype, remains unaltered following introduction of the heptavalent pneumococcal conjugate vaccine. Clin. Vaccin. Immunol. 19, 891–896 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Orihuela, C. J. et al. Microarray analysis of pneumococcal gene expression during invasive disease. Infect. Immun. 72, 5582–5596 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talkington, D. F., Crimmins, D. L., Voellinger, D. C., Yother, J. & Briles, D. E. A 43-kilodalton pneumococcal surface protein, PspA: isolation, protective abilities, and structural analysis of the amino-terminal sequence. Infect. Immun. 59, 1285–1289 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandileone, M. C. C. et al. Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil: towards novel pneumococcal protein vaccines. Vaccine 22, 3890–3896 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernard, B., Giovanni, G., R, F. R. & K, H. S. Pneumococcal pspA Sequence Types of Prevalent Multiresistant Pneumococcal Strains in the United States and of Internationally Disseminated Clones. J. Clin. Microbiol 38, 3663–3669 (2000).

    Article 

    Google Scholar
     

  • Qian, J. et al. Diversity of pneumococcal surface protein A (PspA) and relation to sequence typing in Streptococcus pneumoniae causing invasive disease in Chinese children. Eur. J. Clin. Microbiol. Infect. Dis. 31, 217–223 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollingshead, S. K., Becker, R. & Briles, D. E. Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 68, 5889–5900 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, B. et al. Distribution and Variation of Serotypes and Pneumococcal Surface Protein A Clades of Streptococcus pneumoniae Strains Isolated From Adult Patients With Invasive Pneumococcal Disease in Japan. Front Cell Infect. Microbiol 11, 617573 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, H. et al. PspA diversity, serotype distribution and antimicrobial resistance of invasive pneumococcal isolates from paediatric patients in Shenzhen, China. Infect. Drug Resist 14, 49–58 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno, A. T. et al. Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. Clin. Vaccin. Immunol. 17, 439–446 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Nabors, G. S. et al. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules. Vaccine 18, 1743–1754 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lane, J. R., Tata, M., Briles, D. E. & Orihuela, C. J. A jack of all trades: The role of pneumococcal surface protein A in the pathogenesis of streptococcus pneumoniae. Front Cell Infect. Microbiol 12, 826264 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, B., Szalai, A. J., Thomas, O., Hollingshead, S. K. & Briles, D. E. Both family 1 and family 2 PspA proteins can inhibit complement deposition and confer virulence to a capsular serotype 3 strain of streptococcus pneumoniae. Infect. Immun. 71, 75–85 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, A. H., Fulgham, R. L., McCrory, M. A., Briles, D. E. & Szalai, A. J. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect. Immun. 67, 4720–4724 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukerji, R. et al. Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine. J. Immunol. 189, 5327–5335 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaper, M., Hollingshead, S. K., Benjamin, W. H. Jr & Briles, D. E. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect. Immun. 72, 5031–5040 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Håkansson, A. et al. Characterization of binding of human lactoferrin to pneumococcal surface protein A. Infect. Immun. 69, 3372–3381 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, P. J. et al. PspA facilitates evasion of pneumococci from bactericidal activity of neutrophil extracellular traps (NETs). Micro. Pathog. 136, 103653 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Briles, D. E. et al. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with streptococcus pneumoniae. J. Infect. Dis. 188, 339–348 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • BRILES, D. E. et al. PspA and PspC: Their potential for use as pneumococcal vaccines. Microb. Drug Resistance 3, 401–408 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Wu, H.-Y., Nahm, M. H., Guo, Y., Russell, M. W. & Briles, D. E. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with streptococcus pneumoniae. J. Infect. Dis. 175, 839–846 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira, D. M. et al. Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin. Vaccin. Immunol. 16, 636–645 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Briles, D. E. et al. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of streptococcus pneumoniae. Infect. Immun. 68, 796–800 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, M. et al. Oral immunization with PspA elicits protective humoral immunity against Streptococcus pneumoniae infection. Infect. Immun. 65, 640 LP–640644 (1997).

    Article 

    Google Scholar
     

  • Miyaji, E. N. et al. Evaluation of a vaccine formulation against streptococcus pneumoniae based on choline-binding proteins. Clin. Vaccin. Immunol. 22, 213–220 (2015).

    Article 

    Google Scholar
     

  • Scott, N. R., Mann, B., Tuomanen, E. I. & Orihuela, C. J. Multi-valent protein hybrid pneumococcal vaccines: A strategy for the next generation of vaccines. Vaccines (Basel) 9, 209 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Comparison of immunogenicity and protection of two pneumococcal protein vaccines based on PsaA and PspA. Infect. Immun. 86, e00916-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, Q. O., Lei, B. & Harmsen, A. G. Pneumococcal surface protein A contributes to secondary Streptococcus pneumoniae infection after influenza virus infection. J. Infect. Dis. 200, 537–545 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Briles, D. E. et al. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with streptococcus pneumoniae bearing heterologous PspA. J. Infect. Dis. 182, 1694–1701 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darrieux, M. et al. Recognition of pneumococcal isolates by antisera raised against PspA fragments from different clades. J. Med Microbiol 57, 273–278 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wit, Ede et al. Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Res. 103, 155–161 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Barthelemy, A. et al. Influenza A virus-induced release of interleukin-10 inhibits the anti-microbial activities of invariant natural killer T cells during invasive pneumococcal superinfection. Mucosal Immunol. 10, 460–469 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machado, A. V., Naffakh, N., Werf, Svander & Escriou, N. Expression of a foreign gene by stable recombinant influenza viruses harboring a dicistronic genomic segment with an internal promoter. Virology 313, 235–249 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vieira Machado, A., Naffakh, N., Gerbaud, S., van der Werf, S. & Escriou, N. Recombinant influenza A viruses harboring optimized dicistronic NA segment with an extended native 5′ terminal sequence: Induction of heterospecific B and T cell responses in mice. Virology 345, 73–87 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbosa, R. P. A. et al. Protective immunity and safety of a genetically modified influenza virus vaccine. PLoS One 9, e98685 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, E., Neumann, G., Hobom, G., Webster, R. G. & Kawaoka, Y. “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267, 310–317 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machado, A. V. et al. Prime and boost immunization with influenza and adenovirus encoding the Toxoplasma gondii surface antigen 2 (SAG2) induces strong protective immunity. Vaccine 28, 3247–3256 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbosa, R. P. A. et al. Vaccination Using Recombinants Influenza and Adenoviruses Encoding Amastigote Surface Protein-2 Are Highly Effective on Protection against Trypanosoma cruzi Infection. PLoS One 8, e61795 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castro Martin, I. F. et al. Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat. Commun. 8, 1396 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aida, Y. & Pabst, M. J. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J. Immunol. Methods 132, 191–195 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints12. Am. J. Epidemiol. 27, 493–497 (1938).

    Article 

    Google Scholar
     

  • Principi, N. & Esposito, S. Development of pneumococcal vaccines over the last 10 years. Expert Opin. Biol. Ther. 18, 7–17 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mestrovic, T. et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health 7, e897–e913 (2022).

    Article 

    Google Scholar
     

  • Duke, J. A. & Avci, F. Y. Emerging vaccine strategies against the incessant pneumococcal disease. NPJ Vaccines 8, 122 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajão, D. S. & Pérez, D. R. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol 9, 123 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogales, A. & Martínez-Sobrido, L. Reverse genetics approaches for the development of influenza vaccines. Int. J. Mol. Sci. 18, 20 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, S.-S. & Webby, R. J. Traditional and new influenza vaccines. Clin. Microbiol Rev. 26, 476–492 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, R., Matrosovich, M. & Klenk, H.-D. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev. Med Virol. 12, 159–166 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Bennasroune, A. et al. Elastic fibers and elastin receptor complex: Neuraminidase-1 takes the center stage. Matrix Biol. 84, 57–67 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinek, A., Pshezhetsky, A. V., von Itzstein, M. & Starcher, B. Lysosomal sialidase (neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly. J. Biol. Chem. 281, 3698–3710 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bandell, A., Ambrose, C. S., Maniaci, J. & Wojtczak, H. Safety of live attenuated influenza vaccine (LAIV) in children and adults with asthma: a systematic literature review and narrative synthesis. Expert Rev. Vaccines 20, 717–728 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tosh, P. K., Boyce, T. G. & Poland, G. A. Flu myths: Dispelling the myths associated with live attenuated influenza vaccine. Mayo Clin. Proc. 83, 77–84 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Carter, N. J. & Curran, M. P. Live attenuated influenza vaccine (FluMist®; FluenzTM). Drugs 71, 1591–1622 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy, J. et al. Live attenuated influenza vaccine use and safety in children and adults with asthma. Ann. Allergy, Asthma Immunol. 118, 439–444 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rose, M. A. et al. Effectiveness, tolerability and patient satisfaction of paediatric live-attenuated influenza immunization (LAIV) in routine-care in Germany: A case-control-study. Trials Vaccinol. 2, 49–52 (2013).

    Article 

    Google Scholar
     

  • Martina, B. E. E. et al. A recombinant influenza A Virus Expressing Domain III of West Nile Virus Induces Protective Immune Responses against Influenza and West Nile Virus. PLoS One 6, e18995 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Goede, A. L. et al. Characterization of recombinant influenza A virus as a vector for HIV-1 p17Gag. Vaccine 27, 5735–5739 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Shinya, K., Fujii, Y., Ito, H., Ito, T. & Kawaoka, Y. Characterization of a neuraminidase-deficient influenza a virus as a potential gene delivery vector and a live vaccine. J. Virol. 78, 3083–3088 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camberlein, E. et al. Importance of bacterial replication and alveolar macrophage-independent clearance mechanisms during early lung infection with Streptococcus pneumoniae. Infect. Immun. 83, 1181–1189 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, N. M. et al. Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia. Mucosal Immunol. 11, 220–235 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, R. et al. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunol. 8, 627 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, E. et al. Nasal alum-adjuvanted vaccine promotes IL-33 release from alveolar epithelial cells that elicits IgA production via type 2 immune responses. PLoS Pathog. 17, e1009890- (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum. Vaccin Immunother. 13, 2688–2694 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thakkar, S. G. et al. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J. Controlled Release 292, 111–118 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. An intranasal vaccine targeting the receptor binding domain of SARS-CoV-2 elicits a protective immune response. Front Immunol. 13, 1005321 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machin, D., Cheung, Y. B. & Parmar, M. Survival Analysis: A Practical Approach. (Wiley, 2006).

  • Pintilie, M. Competing Risks: A Practical Perspective. (Wiley, New York, NY, USA, 2006).

  • Joiner, K., Brown, E., Hammer, C., Warren, K. & Frank, M. Studies on the mechanism of bacterial resistance to complement-mediated killing. III. C5b-9 deposits stably on rough and type 7 S. pneumoniae without causing bacterial killing. J. Immunol. 130, 845–849 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitharsson, G., Jonsdottir, I., Jonsson, S. & Valdimarsson, H. Opsonization and antibodies to capsular and cell wall polysaccharides of Streptococcus pneumoniae. J. Infect. Dis. 170, 592–599 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paterson, G. K. & Orihuela, C. J. Pneumococci: immunology of the innate host response. Respirology 15, 1057–1063 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, B., Szalai, A. J., Hollingshead, S. K. & Briles, D. E. Effects of PspA and Antibodies to PspA on activation and deposition of complement on the pneumococcal surface. Infect. Immun. 72, 114–122 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snapper, C. M. & Mond, J. J. Towards a comprehensive view of immunoglobulin class switching. Immunol. Today 14, 15–17 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finkelman, F. D. et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev. Immunol. 8, 303–333 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vadesilho, C. F. M. et al. Characterization of the antibody response elicited by immunization with pneumococcal surface protein A (PspA) as recombinant protein or DNA vaccine and analysis of protection against an intranasal lethal challenge with Streptococcus pneumoniae. Micro. Pathog. 53, 243–249 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hanniffy, S. B., Carter, A. T., Hitchin, E. & Wells, J. M. Mucosal delivery of a pneumococcal vaccine using lactococcus lactis affords protection against respiratory infection. J. Infect. Dis. 195, 185–193 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues, T. C. et al. Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One 13, e0191692 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro, J. T. et al. Evaluation of inactivated Bordetella pertussis as a delivery system for the immunization of mice with Pneumococcal Surface Antigen A. PLoS One 15, e0228055 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bordon, J. et al. Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. Int. J. Infect. Dis. 17, e76–e83 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wood, B. L. & Levin, G. R. Interactions between mouse IgG2 antibodies are common and mediated by plasma C1q. Cytom. B Clin. Cytom. 70B, 321–328 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Leatherbarrow, R. J. & Dwek, R. A. Binding of complement subcomponent Clq to mouse IgGl, IgG2a AND IgG2b: A novel Clq binding assay. Mol. Immunol. 21, 321–327 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aschermann, S., Lux, A., Baerenwaldt, A., Biburger, M. & Nimmerjahn, F. The other side of immunoglobulin G: suppressor of inflammation. Clin. Exp. Immunol. 160, 161–167 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lilienthal, G.-M. et al. Potential of murine IgG1 and human IgG4 to inhibit the classical complement and Fcγ receptor activation pathways. Front Immunol. 9, 958 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melis, J. P. M. et al. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Mol. Immunol. 67, 117–130 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arulanandam, B. P., Lynch, J. M., Briles, D. E., Hollingshead, S. & Metzger, D. W. Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect. Immun. 69, 6718–6724 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuberger, M. S. & Rajewsky, K. Activation of mouse complement by monoclonal mouse antibodies. Eur. J. Immunol. 11, 1012–1016 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oishi, K., Koles, N. L., Guelde, G. & Pollack, M. Antibacterial and protective properties of monoclonal antibodies reactive with Escherichia coli O111:B4 lipopolysaccharide: relation to antibody isotype and complement-fixing activity. J. Infect. Dis. 165, 34–45 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, E. J., Hosea, S. W. & Frank, M. M. The role of antibody and complement in the reticuloendothelial clearance of pneumococci from the bloodstream. Rev. Infect. Dis. 5, S797–S805 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, J. S. et al. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc. Natl Acad. Sci. 99, 16969–16974 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDaniel, L. S., Sheffield, J. S., Delucchi, P. & Briles, D. E. PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsular type. Infect. Immun. 59, 222–228 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCool, T. L., Cate, T. R., Moy, G. & Weiser, J. N. the immune response to pneumococcal proteins during experimental human carriage. J. Exp. Med. 195, 359–365 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bitsaktsis, C. et al. Mucosal immunization with an unadjuvanted vaccine that targets streptococcus pneumoniae PspA to human Fcγ receptor type I protects against pneumococcal infection through complement- and lactoferrin-mediated bactericidal activity. Infect. Immun. 80, 1166–1180 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, B., Li, J., Genschmer, K., Hollingshead, S. K. & Briles, D. E. The absence of PspA or presence of antibody to PspA facilitates the complement-dependent phagocytosis of pneumococci in vitro. Clin. Vaccin. Immunol. 19, 1574–1582 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Briles, D. E. et al. The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine 18, 1707–1711 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira, D. M. et al. Protection against nasal colonization with Streptococcus pneumoniae by parenteral immunization with a DNA vaccine encoding PspA (Pneumococcal surface protein A). Micro. Pathog. 48, 205–213 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Oma, K. et al. Intranasal immunization with a mixture of PspA and a Toll-like receptor agonist induces specific antibodies and enhances bacterial clearance in the airways of mice. Vaccine 27, 3181–3188 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campos, I. B. et al. Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A: induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge. Microbes Infect. 10, 481–488 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xin, W., Li, Y., Mo, H., Roland, K. L. & Curtiss, R. PspA Family Fusion Proteins Delivered by Attenuated <em>Salmonella enterica</em> Serovar Typhimurium Extend and Enhance Protection against <em>Streptococcus pneumoniae</em&gt. Infect. Immun. 77, 4518 LP–4514528 (2009).

    Article 

    Google Scholar
     

  • Brandenburg, B. et al. Mechanisms of hemagglutinin targeted influenza virus neutralization. PLoS One 8, e80034 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimmelzwaan, G. F., Fouchier, R. A. M. & Osterhaus, A. D. M. E. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr. Opin. Biotechnol. 18, 529–536 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, W. et al. Cross-protective immune responses induced by sequential influenza virus infection and by sequential vaccination with inactivated influenza vaccines. Front Immunol. 9, 2312 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirchenbaum, G. A., Carter, D. M. & Ross, T. M. Sequential infection in ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts hemagglutinin stalk-specific antibodies. J. Virol. 90, 1116–1128 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsura, H. et al. A bivalent vaccine based on a replication-incompetent influenza virus protects against streptococcus pneumoniae and influenza virus infection. J. Virol. 88, 13410–13417 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uraki, R. et al. A bivalent vaccine based on a PB2-knockout influenza virus protects mice from secondary pneumococcal pneumonia. J. Infect. Dis. 212, 1939–1948 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pimenta, F. C. et al. Genetic diversity of PspA types among nasopharyngeal isolates collected during an ongoing surveillance study of children in Brazil. J. Clin. Microbiol 44, 2838–2843 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darrieux, M. et al. Fusion proteins containing family 1 and family 2 pspa fragments elicit protection against streptococcus pneumoniae that correlates with antibody-mediated enhancement of complement deposition. Infect. Immun. 75, 5930–5938 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roche, H., Ren, B., McDaniel, L. S., Håkansson, A. & Briles, D. E. Relative roles of genetic background and variation in pspa in the ability of antibodies to PspA to protect against capsular type 3 and 4 strains of <em>Streptococcus pneumoniae</em>. Infect. Immun. 71, 4498 LP–4494505 (2003).

    Article 

    Google Scholar
     

  • Milián, E. & Kamen, A. A. Current and emerging cell culture manufacturing technologies for influenza vaccines. Biomed. Res. Int. 2015, 504831 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar