Interaural level difference sensitivity in neonatally deafened rats fitted with bilateral cochlear implants

  • Zwislocki, J. & Feldman, R. S. Just Noticeable Dichotic Phase Difference (The Journal of the Acoustical Society of America, 1956).

  • Thavam, S. & Dietz, M. Smallest perceivable interaural time differences. J. Acoust. Soc. Am. 145, 458 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mills, A. W. Lateralization of High-Frequency Tones (The Journal Of The Acoustical Society Of America, 1960).

  • Yost, W. A. & Dye, R. H. Discrimination of interaural differences of level as a function of frequency. J. Acoust. Soc. Am. 83, 1846–1851 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koehnke, J., Culotta, C. P., Hawley, M. L. & Colburn, H. S. Effects of reference interaural time and intensity differences on binaural performance in listeners with normal and impaired hearing. Ear Hear. 16, 331–353 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keating, P., Nodal, F. R., Gananandan, K., Schulz, A. L. & King, A. J. Behavioral sensitivity to broadband binaural localization cues in the ferret. J. Association Res. Otolaryngology: JARO. 14, 561–572 (2013).

    Article 
    PubMed Central 

    Google Scholar
     

  • Li, K. et al. Microsecond sensitivity to envelope interaural time differences in rats. J. Acoust. Soc. Am. 145, EL341 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tolnai, S., Beutelmann, R. & Klump, G. M. Exploring binaural hearing in gerbils (Meriones unguiculatus) using virtual headphones. PloS One. 12, e0175142 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greene, N. T. et al. Spatial hearing ability of the pigmented Guinea pig (Cavia porcellus): Minimum audible angle and spatial release from masking in azimuth. Hear. Res. 365, 62–76 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardo-Vazquez, J. L. et al. The mechanistic foundation of Weber’s law. Nat. Neurosci. 22, 1493–1502 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Hoesel, R. J. M. Exploring the benefits of bilateral cochlear implants. Audiol. Neuro-otol. 9, 234–246 (2004).

    Article 

    Google Scholar
     

  • van Hoesel, R. J. M. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear. Res. 288, 100–113 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Litovsky, R. Y. et al. Studies on bilateral cochlear implants at the University of Wisconsin’s Binaural Hearing and Speech Laboratory. J. Am. Acad. Audiol. 23: 476–494. (2012).

  • Laback, B., Egger, K. & Majdak, P. Perception and coding of interaural time differences with bilateral cochlear implants. Hear. Res. 322, 138–150 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Laback, B., Pok, S. M., Baumgartner, W. D., Deutsch, W. A. & Schmid, K. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors. Ear Hear. 25, 488–500 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Gordon, K. A., Deighton, M. R., Abbasalipour, P. & Papsin, B. C. Perception of binaural cues develops in children who are deaf through bilateral cochlear implantation. PloS One. 9, e114841 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sparreboom, M., Ausili, S. A. & Mylanus, E. A. M. Lateralization of interaural level differences in children with bilateral cochlear implants. Cochlear Implant. Int. 23, 125–133 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Inbody, S. B. & Feng, A. S. Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat. Brain Res. 210, 361–366 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, J. B., Glenn, S. L. & Beaver, C. J. Sound frequency and binaural response properties of single neurons in rat inferior colliculus. Hear. Res. 56, 273–280 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsytsarev, V., Fukuyama, H., Pope, D., Pumbo, E. & Kimura, M. Optical imaging of interaural time difference representation in rat auditory cortex. Front. Neuroeng. 2, 2 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buck, A. N., Rosskothen-Kuhl, N. & Schnupp, J. W. Sensitivity to interaural time differences in the inferior colliculus of cochlear implanted rats with or without hearing experience. Hear. Res. 408, 108305 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, K., Rajendran, V. G., Mishra, A. P., Chan, C. H. K. & Schnupp, J. W. H. Interaural time difference tuning in the rat inferior colliculus is predictive of behavioral sensitivity. Hear. Res. 409, 108331 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, K., Auksztulewicz, R., Chan, C. H. K., Mishra, A. P. & Schnupp, J. W. H. The precedence effect in spatial hearing manifests in cortical neural population responses. BMC Biol. 20, 48 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buck, A. N., Buchholz, S., Schnupp, J. W. & Rosskothen-Kuhl, N. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Sci. Rep. 13, 3785 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosskothen-Kuhl, N., Buck, A. N., Li, K. & Schnupp, J. W. Microsecond interaural time difference discrimination restored by cochlear implants after neonatal deafness. eLife 10. (2021).

  • Schnupp, J. W. H. et al. Is Inappropriate Pulse Timing Responsible for Poor Binaural Hearing with Cochlear Implants? bioRxiv. (2023).

  • Osako, S., Tokimoto, T. & Matsuura, S. Effects of kanamycin on the auditory evoked responses during postnatal development of the hearing of the rat. Acta Otolaryngol. 88, 359–368 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda, K. et al. Increase in glutamate-aspartate transporter (GLAST) mRNA during kanamycin-induced cochlear insult in rats. Hear. Res. 133, 10–16 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jero, J., Coling, D. E. & Lalwani, A. K. The use of Preyer’s reflex in evaluation of hearing in mice. Acta Otolaryngol. 121, 585–589 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wesolek, C. M., Koay, G., Heffner, R. S. & Heffner, H. E. Laboratory rats (Rattus norvegicus) do not use binaural phase differences to localize sound. Hear. Res. 265, 54–62 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Grothe, B., Pecka, M. & McAlpine, D. Mechanisms of sound localization in mammals. Physiol. Rev. 90, 983–1012 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnupp, J. W. H. & Carr, C. E. On hearing with more than one ear: Lessons from evolution. Nat. Neurosci. 12, 692–697 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grothe, B. & Neuweiler, G. The function of the medial superior olive in small mammals: Temporal receptive fields in auditory analysis. J. Comp. Physi. A, Sensory, Neural, Behav. Physiol. 186, 413–423 (2000).

  • Moore, J. K. Organization of the human superior olivary complex. Microsc. Res. Tech. 51, 403–412 (2000).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/1097-0029(20001115)51:43.0.CO;2-Q” data-track-item_id=”10.1002/1097-0029(20001115)51:43.0.CO;2-Q” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-0029%2820001115%2951%3A4%3C403%3A%3AAID-JEMT8%3E3.0.CO%3B2-Q” aria-label=”Article reference 34″ data-doi=”10.1002/1097-0029(20001115)51:43.0.CO;2-Q”>Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tollin, D. J. The lateral superior olive: a functional role in sound source localization. Neuroscientist: Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 9, 127–143 (2003).

    Article 

    Google Scholar
     

  • Faye-Lund, H. & Osen, K. K. Anatomy of the inferior colliculus in rat. Anat. Embryol. 171, 1–20 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Davis, K. A., Ramachandran, R. & May, B. J. Auditory processing of spectral cues for sound localization in the inferior colliculus. J. Assoc. Res. Otolaryngol. JARO. 4, 148–163 (2003).

    Article 

    Google Scholar
     

  • Cant, N. B. & Benson, C. G. Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): Differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J. Comp. Neurol. 495, 511–528 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubka, P. et al. Dissociated representation of Binaural cues in single-sided deafness: implications for Cochlear Implantation. J. Neuroscience: Official J. Soc. Neurosci. 44. (2024).

  • Polley, D. B., Thompson, J. H. & Guo, W. Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development. Nat. Commun. 4, 2547 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Couchman, K. et al. Lateral superior olive function in congenital deafness. Hear. Res. 277, 163–175 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehlers, E., Goupell, M. J., Zheng, Y., Godar, S. P. & Litovsky, R. Y. Binaural sensitivity in children who use bilateral cochlear implants. J. Acoust. Soc. Am. 141, 4264 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eklöf, M. & Tideholm, B. The choice of stimulation strategy affects the ability to detect pure tone inter-aural time differences in children with early bilateral cochlear implantation. Acta Otolaryngol. 138, 554–561 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Litovsky, R. Y., Jones, G. L., Agrawal, S. & van Hoesel, R. Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. J. Acoust. Soc. Am. 127, 400–414 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senn, P., Kompis, M., Vischer, M. & Haeusler, R. Minimum audible angle, just noticeable interaural differences and speech intelligibility with bilateral cochlear implants using clinical speech processors. Audiol. Neuro-otol. 10, 342–352 (2005).

    Article 

    Google Scholar
     

  • Grantham, D. W., Ashmead, D. H., Ricketts, T. A., Haynes, D. S. & Labadie, R. F. Interaural time and level difference thresholds for acoustically presented signals in post-lingually deafened adults fitted with bilateral cochlear implants using CIS + processing. Ear Hear. 29, 33–44 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • van Hoesel, R. J. M. & Tyler, R. S. Speech perception, localization, and lateralization with bilateral cochlear implants. J. Acoust. Soc. Am. 113, 1617–1630 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Grantham, D. W., Ashmead, D. H., Ricketts, T. A., Labadie, R. F. & Haynes, D. S. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants. Ear Hear. 28, 524–541 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, A. D. & Tollin, D. J. Slow temporal integration enables robust neural coding and perception of a cue to sound source location. J. Neurosci. Off. J. Soc. Neurosci. 36, 9908–9921 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hartmann, W. M. & Constan, Z. A. Interaural level differences and the level-meter model. J. Acoust. Soc. Am. 112, 1037–1045 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zeng, F. G. et al. Speech dynamic range and its effect on cochlear implant performance. J. Acoust. Soc. Am. 111, 377–386 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kreft, H. A., Donaldson, G. S. & Nelson, D. A. Effects of pulse rate and electrode array design on intensity discrimination in cochlear implant users. J. Acoust. Soc. Am. 116, 2258–2268 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Botros, A., van Dijk, B. & Killian, M. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence. Artif. Intell. Med. 40, 15–28 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Carlyon, R. P. & Goehring, T. Cochlear Implant Research and Development in the twenty-first century: A critical update. J. Assoc. Res. Otolaryngol.: JARO. 22, 481–508 (2021).

    Article 
    PubMed Central 

    Google Scholar