Integrating tumor and healthy epithelium in a micro-physiology multi-compartment approach to study renal cell carcinoma pathophysiology – Scientific Reports

  • Padala, S. A. et al. Epidemiology of renal cell carcinoma. World J. Oncol. 11, 79–87 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ljungberg, B. et al. European association of urology guidelines on renal cell carcinoma: The 2022 update. Eur. Urol. 82, 399–410 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hemminki, O. et al. Treatment of advanced renal cell carcinoma: Immunotherapies have demonstrated overall survival benefits while targeted therapies have not. Eur. Urol. Open Sci. 22, 61–73 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, P. C. The potential impact of new drug and therapeutic modalities on drug resistance to renal cell carcinoma. Anticancer Res. 43, 983–991 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhan, X. et al. Trends in cause of death among patients with renal cell carcinoma in the United States: A SEER-based study. BMC Public Health 23, 770 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, P. C., Rönnau, C., Burchardt, M. & Wolff, I. Kidney cancer and chronic kidney disease: Too close for comfort. Biomedicines 9, 1761 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Loss of Von Hippel-Lindau (VHL) tumor suppressor gene function: VHL–HIF pathway and advances in treatments for metastatic renal cell carcinoma (RCC). Int. J. Mol. Sci. 22, 9795 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckardt, K. U. et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int. 68, 46–51 (2005).

    Article 

    Google Scholar
     

  • Bianchi, C. et al. The glucose and lipid metabolism reprogramming is gradedependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 8, 113502–113515 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucarelli, G. et al. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev. Mol. Diagn. 19, 397–407 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucarelli, G. et al. MUC1 tissue expression and its soluble form CA15-3 identify a clear cell renal cell carcinoma with distinct metabolic profile and poor clinical outcome. Int. J. Mol. Sci. 23, 13968 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • di Meo, N. A. et al. Renal cell carcinoma as a metabolic disease: An update on main pathways, potential biomarkers, and therapeutic targets. Int. J. Mol. Sci. 23, 14360 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucarelli, G. et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget 6, 13371–13386 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ragone, R. et al. Renal cell carcinoma: A study through NMR-based metabolomics combined with transcriptomics. Diseases 4, 7 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Lucarelli, G. et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging 10, 3957–3985 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bombelli, S. et al. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. Am. J. Pathol. 190, 2317–2326 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • di Meo, N. A. et al. The dark side of lipid metabolism in prostate and renal carcinoma: Novel insights into molecular diagnostic and biomarker discovery. Expert Rev. Mol. Diagn. 23, 297–313 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gigante, M. et al. miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction. J. Transl. Med. 14, 1–13 (2016).

    Article 

    Google Scholar
     

  • Lucarelli, G. et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 35(461), e15-461.e27 (2017).


    Google Scholar
     

  • Lucarelli, G. et al. MUC1 expression affects the immunoflogosis in renal cell carcinoma microenvironment through complement system activation and immune infiltrate modulation. Int. J. Mol. Sci. 24, 4814 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, W. & Siemann, D. W. Inhibition of renal cell carcinoma angiogenesis and growth by antisense oligonucleotides targeting vascular endothelial growth factor. Br. J. Cancer 87, 119–126 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro, D. D. et al. Understanding the tumor immune microenvironment in renal cell carcinoma. Cancers 15, 2500 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majo, S., Courtois, S., Souleyreau, W., Bikfalvi, A. & Auguste, P. Impact of extracellular matrix components to renal cell carcinoma behavior. Front. Oncol. 10, 625 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lasorsa, F. et al. Immune checkpoint inhibitors in renal cell carcinoma: Molecular basis and rationale for their use in clinical practice. Biomedicines 11, 1071 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lasorsa, F. et al. Cellular and molecular players in the tumor microenvironment of renal cell carcinoma. J. Clin. Med. 12, 3888 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozerlat, I. Kidney cancer: Targeted therapy of glucose uptake via GLUT1 kills RCC cells. Nat. Rev. Urol. 8, 471 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Perrino, C. M. et al. Morphological spectrum of renal cell carcinoma, unclassified: an analysis of 136 cases. Histopathology 72, 305–319 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, C. X., Luo, C. L. & Wu, X. H. Hypoxia promotes 786-O cells invasiveness and resistance to sorafenib via HIF-2α/COX-2. Med. Oncol. 32, 1–9 (2015).

    Article 

    Google Scholar
     

  • Shapiro, D. D., Virumbrales-Muñoz, M., Beebe, D. J. & Abel, E. J. Models of renal cell carcinoma used to investigate molecular mechanisms and develop new therapeutics. Front. Oncol. 12, 871252 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lugand, L. et al. Methods for establishing a renal cell carcinoma tumor spheroid model with immune infiltration for immunotherapeutic studies. Front. Oncol. 12, 898732 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobczuk, P. et al. Choosing the right animal model for renal cancer research. Transl. Oncol. 13, 100745 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caetano-Pinto, P. Amplifying the impact of kidney microphysiological systems: Predicting renal drug clearance using mechanistic modelling based on reconstructed drug secretion. ALTEX https://doi.org/10.14573/altex.2204011 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, C. P., Tsuchida, C., Zheng, Y., Himmelfarb, J. & Akilesh, S. A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia (United States) 20, 610–620 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Simon, B. R., Wilson, M. J. & Wickliffe, J. K. The RPTEC/TERT1 cell line models key renal cell responses to the environmental toxicants, benzo[a]pyrene and cadmium. Toxicol. Rep. 1, 231–242 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, T. P. et al. Demonstration of the first-pass metabolism in the skin of the hair dye, 4-amino-2-hydroxytoluene, using the Chip2 skin–liver microphysiological model. J. Appl. Toxicol. 41, 1553–1567 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clement, C. A. et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 3, 1806–1814 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caetano-Pinto, P. et al. Epidermal growth factor receptor mediates the basolateral uptake of phosphorothioate-modified antisense oligonucleotides in the kidney. Organs-on-a-Chip 4, 100022 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Prim. 2, 33 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D., Gust, M. & Ferrell, N. Kidney-on-a-chip: Mechanical stimulation and sensor integration. Sensors 22, 6889 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padmyastuti, A. et al. Microfluidic-based prostate cancer model for investigating the secretion of prostate-specific antigen and microRNAs in vitro. Sci. Rep. 13, 11623 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rougerie, P. et al. Topographical curvature is sufficient to control epithelium elongation. Sci. Rep. 10, 14784 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Genderen, A. M. et al. Topographic guidance in melt-electrowritten tubular scaffolds enhances engineered kidney tubule performance. Front. Bioeng. Biotechnol. 8, 617364 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kistner, T. M., Pedersen, B. K. & Lieberman, D. E. Interleukin 6 as an energy allocator in muscle tissue. Nat. Metab. 4, 170–179 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Che, K., Han, W., Zhang, M. & Niu, H. Role of neutrophil gelatinase-associated lipocalin in renal cell carcinoma (review). Oncol. Lett. 21, 1 (2021).


    Google Scholar
     

  • Arena, A. et al. Both IL-1β and TNF-α regulate NGAL expression in polymorphonuclear granulocytes of chronic hemodialysis patients. Mediat. Inflamm. 2010, 613937. https://doi.org/10.1155/2010/613937 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 7, 305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawls, K. D. et al. Predicting changes in renal metabolism after compound exposure with a genome-scale metabolic model. Toxicol. Appl. Pharmacol. 412, 115390 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, C. et al. Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Front. Cell Dev. Biol. 10, 1013885 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed, E., Al-Khami, A. A. & Rodriguez, P. C. The cellular metabolic landscape in the tumor milieu regulates the activity of myeloid infiltrates. Cell. Mol. Immunol. 15, 421–427 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caetano-Pinto, P. et al. In vitro characterization of renal drug transporter activity in kidney cancer. Int. J. Mol. Sci. 23, 10177 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolon, C., Gauthier, C. & Simonnet, H. Glycolysis inhibition by palmitate in renal cells cultured in a two-chamber system. Am. J. Physiol. Cell Physiol. 273, C1732–C1738 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Smith, C. P. et al. Proximal tubule transferrin uptake is modulated by cellular iron and mediated by apical membrane megalin–cubilin complex and transferrin receptor 1. J. Biol. Chem. 294, 7025–7036 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewald, M. L., Chen, Y. H., Lee, A. P. & Hughes, C. C. W. The vascular niche in next generation microphysiological systems. Lab Chip 21, 3244–3262 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogura, T., Tsuchiya, A., Minas, T. & Mizuno, S. Methods of high integrity RNA extraction from cell/agarose construct. BMC Res. Notes 8, 1–8 (2015).

    Article 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sedlazeck, F. J., Rescheneder, P. & Von Haeseler, A. NextGenMap: Fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 

    Google Scholar