Search
Close this search box.

Inducing positive inotropy in human iPSC-derived cardiac muscle by gene editing-based activation of the cardiac α-myosin heavy chain – Scientific Reports

  • Benjamin, E. J. et al. Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation https://doi.org/10.1161/CIR.0000000000000558 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez, A. D. & Murray, C. C. The global burden of disease, 1990–2020. Nat. Med. 4, 1241–1243 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weintraub, N. L. et al. Acute heart failure syndromes: Emergency department presentation, treatment, and disposition: current approaches and future aims. A scientific statement from the American Heart Association. Circulation. https://doi.org/10.1161/CIR.0b013e3181f9a223 (2010).

  • Francis, G. S. et al. ACCF/AHA/ACP/HFSA/ISHLT 2010 clinical competence statement on management of patients with advanced heart failure and cardiac transplant: a report of the ACCF/AHA/ACP Task Force on Clinical Competence and Training. J. Am. Coll. Cardiol 56, 424–453. https://doi.org/10.1016/j.jacc.2010.04.014 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, W. H. & Francis, G. S. The year in heart failure. J. Am. Coll. Cardiol. 55, 688–696. https://doi.org/10.1016/j.jacc.2009.10.028 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Unzek, S. & Francis, G. S. Management of heart failure: A brief review and selected update. Cardiol. Clin 26, 561–571. https://doi.org/10.1016/j.ccl.2008.06.001 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Eschenhagen, T. & Weinberger, F. Heart repair with myocytes. Circ. Res. 124, 843–845. https://doi.org/10.1161/CIRCRESAHA.118.314336 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madonna, R. et al. ESC Working Group on Cellular Biology of the Heart: Position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc. Res. 115, 488–500. https://doi.org/10.1093/cvr/cvz010 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Basic and translational research in cardiac repair and regeneration: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78, 2092–2105. https://doi.org/10.1016/j.jacc.2021.09.019 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein, J. A. A time to press reset and regenerate cardiac stem cell biology. JAMA Cardiol. 4, 95–96. https://doi.org/10.1001/jamacardio.2018.4435 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. C. et al. Towards precision medicine with human iPSCs for cardiac channelopathies. Circ. Res. 125, 653–658. https://doi.org/10.1161/CIRCRESAHA.119.315209 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hnatiuk, A. P., Briganti, F., Staudt, D. W. & Mercola, M. Human iPSC modeling of heart disease for drug development. Cell Chem. Biol. 28, 271–282. https://doi.org/10.1016/j.chembiol.2021.02.016 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wheelwright, M. et al. Advancing physiological maturation in human induced pluripotent stem cell-derived cardiac muscle by gene editing an inducible adult troponin isoform switch. Stem Cells 38, 1254–1266. https://doi.org/10.1002/stem.3235 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bedada, F. B., Wheelwright, M. & Metzger, J. M. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. Biochim. Biophys. Acta 1829–1838, 2016. https://doi.org/10.1016/j.bbamcr.2015.11.005 (1863).

    Article 
    CAS 

    Google Scholar
     

  • Bedada, F. B. et al. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Rep. 3, 594–605. https://doi.org/10.1016/j.stemcr.2014.07.012 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Karbassi, E. et al. Cardiomyocyte maturation: Advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 17, 341–359. https://doi.org/10.1038/s41569-019-0331-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchiano, S., Bertero, A. & Murry, C. E. Learn from your elders: developmental biology lessons to guide maturation of stem cell-derived cardiomyocytes. Pediatr. Cardiol. 40, 1367–1387. https://doi.org/10.1007/s00246-019-02165-5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedada, F. B., Wheelwright, M. & Metzger, J. M. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. Biochim. Biophys. Acta 1829–1838, 2015. https://doi.org/10.1016/j.bbamcr.2015.11.005 (1863).

    Article 
    CAS 

    Google Scholar
     

  • Mummery, C. L. Perspectives on the use of human induced pluripotent stem cell-derived cardiomyocytes in biomedical research. Stem Cell Rep. 11, 1306–1311. https://doi.org/10.1016/j.stemcr.2018.11.011 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. & Murry, C. E. One stride forward: Maturation and scalable production of engineered human myocardium. Circulation 135, 1848–1850. https://doi.org/10.1161/CIRCULATIONAHA.117.024751 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eschenhagen, T. et al. Cardiomyocyte regeneration: A consensus statement. Circulation 136, 680–686. https://doi.org/10.1161/CIRCULATIONAHA.117.029343 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metzger, J. M. The road to physiological maturation of stem cell-derived cardiac muscle runs through the sarcomere. J. Mol. Cell Cardiol. 170, 117–120. https://doi.org/10.1016/j.yjmcc.2022.06.005 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, A. M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herron, T. J. et al. Ca2+-independent positive molecular inotropy for failing rabbit and human cardiac muscle by alpha-myosin motor gene transfer. FASEB J. 24, 415–424. https://doi.org/10.1096/fj.09-140566 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, J. et al. Designing heart performance by gene transfer. Physiol. Rev. 88, 1567–1651 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herron, T. J., Devaney, E. J. & Metzger, J. M. Modulation of cardiac performance by motor protein gene transfer. Ann. N. Y. Acad. Sci 1123, 96–104 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyata, S., Minobe, W., Bristow, M. R. & Leinwand, L. A. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ. Res 86, 386–390 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakao, K., Minobe, W., Roden, R., Bristow, M. R. & Leinwand, L. A. Myosin heavy chain gene expression in human heart failure. J. Clin. Invest 100, 2362–2370 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mercadier, J. J. et al. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ. Res 53, 52–62 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Everett, A. W. Isomyosin expression in human heart in early pre- and post-natal life. J. Mol. Cell Cardiol. 18, 607–615. https://doi.org/10.1016/s0022-2828(86)80968-3 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herron, T. J. et al. Calcium-independent negative inotropy by beta-myosin heavy chain gene transfer in cardiac myocytes. Circ. Res 100, 1182–1190 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metzger, J. M., Greaser, M. L. & Moss, R. L. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle. J. Gen. Physiol. 93, 855-883 (1989).

  • Sharma, A. et al. Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nat. Protoc. 13, 3018–3041. https://doi.org/10.1038/s41596-018-0076-8 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, I. Y., Matsa, E. & Wu, J. C. Induced pluripotent stem cells: At the heart of cardiovascular precision medicine. Nat. Rev. Cardiol https://doi.org/10.1038/nrcardio.2016.36 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMJ Open Sci. 4, e100115. https://doi.org/10.1136/bmjos-2020-100115 (2020).

  • Hockemeyer, D. & Jaenisch, R. Gene targeting in human pluripotent cells. Cold Spring Harb. Symp. Quant. Biol 75, 201–209. https://doi.org/10.1101/sqb.2010.75.021 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857. https://doi.org/10.1038/nbt.1562 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiyaboonchai, A. et al. Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Stem Cell Res. 12, 630–637. https://doi.org/10.1016/j.scr.2014.02.004 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S. H. et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res. 44, 5161–5173. https://doi.org/10.1093/nar/gkw141 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamp, T. J. An electrifying iPSC disease model: Long QT syndrome type 2 and heart cells in a dish. Cell Stem Cell 8, 130–131. https://doi.org/10.1016/j.stem.2011.01.010 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801. https://doi.org/10.1126/science.1172482 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 109, E1848-1857. https://doi.org/10.1073/pnas.1200250109 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herron, T. J. et al. Calcium-independent negative inotropy by beta-myosin heavy chain gene transfer in cardiac myocytes. Circ. Res. 100, 1182–1190. https://doi.org/10.1161/01.RES.0000264102.00706.4e (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westfall, M. V., Rust, E. M. & Metzger, J. M. Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proc. Natl. Acad. Sci. USA 94, 5444–5449 (1997).

  • Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523. https://doi.org/10.1161/CIRCRESAHA.114.300558 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campostrini, G., Windt, L. M., van Meer, B. J., Bellin, M. & Mummery, C. L. Cardiac tissues from stem cells: New routes to maturation and cardiac regeneration. Circ. Res. 128, 775–801. https://doi.org/10.1161/CIRCRESAHA.121.318183 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burridge, P. W. et al. Modeling cardiovascular diseases with patient-specific human pluripotent stem cell-derived cardiomyocytes. Methods Mol. Biol. 1353, 119–130. https://doi.org/10.1007/7651_2015_196 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, W. et al. An unbiased proteomics method to assess the maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 125, 936–953. https://doi.org/10.1161/CIRCRESAHA.119.315305 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandenboom, R., Herron, T., Favre, E., Albayya, F. P. & Metzger, J. M. Gene transfer, expression, and sarcomeric incorporation of a headless myosin molecule in cardiac myocytes: Evidence for a reserve in myofilament motor function. Am. J. Physiol. Heart Circ. Physiol. 300, H574–H582. https://doi.org/10.1152/ajpheart.00786.2009 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonald, K. S. & Herron, T. J. It takes “heart” to win: What makes the heart powerful?. News Physiol. Sci. 17, 185–190 (2002).

    PubMed 

    Google Scholar
     

  • Schwan, J. & Campbell, S. G. Prospects for in vitro myofilament maturation in stem cell-derived cardiac myocytes. Biomark. Insights 10, 91–103. https://doi.org/10.4137/BMI.S23912 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herron, T. J. & McDonald, K. S. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ. Res 90, 1150–1152 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahdavi, V., Chambers, A. P. & Nadal-Ginard, B. Cardiac alpha- and beta-myosin heavy chain genes are organized in tandem. Proc. Natl. Acad. Sci. USA 81, 2626–2630 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haddad, F. et al. Intergenic transcription and developmental regulation of cardiac myosin heavy chain genes. Am. J. Physiol. Heart Circ. Physiol. 294, H29–H40. https://doi.org/10.1152/ajpheart.01125.2007 (2008).

  • Haddad, F., Bodell, P. W., Qin, A. X., Giger, J. M. & Baldwin, K. M. Role of antisense RNA in coordinating cardiac myosin heavy chain gene switching. J. Biol. Chem. 278, 37132–37138. https://doi.org/10.1074/jbc.M305911200 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spudich, J. A. Molecular motors: Forty years of interdisciplinary research. Mol. Biol. Cell 22, 3936–3939. https://doi.org/10.1091/mbc.E11-05-0447 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, A. A. et al. Cardiac sarcomere signaling in health and disease. Int. J. Mol. Sci. 23, 1. https://doi.org/10.3390/ijms232416223 (2022).

  • Sellers, J. R. Myosins: A diverse superfamily. Biochim. Biophys. Acta 1496, 3–22 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barany, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50, Suppl-218 (1967).

  • Hoh, J. F., McGrath, P. A. & Hale, P. T. Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement. J. Mol. Cell Cardiol 10, 1053–1076 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pope, B., Hoh, J. F. & Weeds, A. The ATPase activities of rat cardiac myosin isoenzymes. FEBS Lett. 118, 205–208 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Litten, R. Z. III., Martin, B. J., Howe, E. R., Alpert, N. R. & Solaro, R. J. Phosphorylation and adenosine triphosphatase activity of myofibrils from thyrotoxic rabbit hearts. Circ. Res 48, 498–501 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alpert, N. R. & Mulieri, L. A. Functional consequences of altered cardiac myosin isoenzymes. Med. Sci. Sports Exerc. 18, 309–313. https://doi.org/10.1249/00005768-198606000-00009 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alpert, N. R. et al. Molecular mechanics of mouse cardiac myosin isoforms. Am. J. Physiol. Heart Circ. Physiol. 283, H1446–H1454 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krenz, M. et al. Analysis of myosin heavy chain functionality in the heart. J. Biol. Chem. 278, 17466–17474. https://doi.org/10.1074/jbc.M210804200 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowes, B. D. et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 100, 2315–2324 (1997).

  • Linseman, J. V. & Bristow, M. R. Drug therapy and heart failure prevention. Circulation 107, 1234–1236 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Korte, F. S., Herron, T. J., Rovetto, M. J. & McDonald, K. S. Power output is linearly related to MyHC content in rat skinned myocytes and isolated working hearts. Am. J. Physiol. Heart Circ. Physiol. 289, H801–H812 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorn, G. W., Robbins, J., Ball, N. & Walsh, R. A. Myosin heavy chain regulation and myocyte contractile depression after LV hypertrophy in aortic-banded mice. Am. J. Physiol 267, H400–H405 (1994).

    CAS 
    PubMed 

    Google Scholar