Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges

  • Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varga, Z. V., Ferdinandy, P., Liaudet, L. & Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 309, H1453–H1467 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bird, S. D. et al. The human adult cardiomyocyte phenotype. Cardiovasc. Res. 58, 423–434 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milani-Nejad, N. & Janssen, P. M. L. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol. Ther. 14, 235–249 (2014).

    Article 

    Google Scholar
     

  • Maltsev, V. A., Rohwedel, J., Hescheler, J. & Wobus, A. M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50 (1993).

    CAS 

    Google Scholar
     

  • Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colatsky, T. et al. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative — update on progress. J. Pharmacol. Toxicol. Methods 81, 15–20 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKenna, W. J. & Judg, D. P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 18, 22–36 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ho, C. Y. et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 138, 1387–1398 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lippi, M. et al. Spectrum of rare and common genetic variants in arrhythmogenic cardiomyopathy patients. Biomolecules 12, 1043 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhagwan, J. R. et al. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J. Mol. Cell. Cardiol. 145, 43–53 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosqueira, D. et al. CRISPR/Cas9 editing in human pluripotent stemcell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 39, 3879–3892 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loiben, A. M. et al. Cardiomyocyte apoptosis is associated with contractile dysfunction in stem cell model of MYH7 E848G hypertrophic cardiomyopathy. Int. J. Mol. Sci. 24, 4909 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prondzynski, M. et al. Disease modeling of a mutation in α‐actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol. Med. 11, e11115 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. et al. Plakophilin-2 truncating variants impair cardiac contractility by disrupting sarcomere stability and organization. Sci. Adv. 7, eabh3995 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohn, R. et al. A contraction stress model of hypertrophic cardiomyopathy due to sarcomere mutations. Stem Cell Reports 12, 71–83 (2019).

    CAS 

    Google Scholar
     

  • Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

  • Toepfer, C. N. et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation 141, 828–842 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briganti, F. et al. iPSC modeling of RBM20-deficient DCM identifies upregulation of RBM20 as a therapeutic strategy. Cell Rep. 32, 108117 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, W. E. et al. Maturation of pluripotent stem cell-derived cardiomyocytes enables modeling of human hypertrophic cardiomyopathy. Stem Cell Reports 16, 519–533 (2021). An informative study using a combination of metabolic maturation and micropatterned surfaces to improve the maturation of hiPSC-CMs, increasing sensitivity to pathological stimuli.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Querdel, E. et al. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner. Circulation 143, 1991–2006 (2021). An informative study using dynamic mechanical stimulation of EHT patches to obtain improved maturation of hiPSC-CMs. Transplantation of the patches resulted in partial remuscularization of the injured heart in a guinea pig injury model.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36, 597–605 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karbassi, E. et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 17, 341–359 (2020). A comprehensive review on the structural and functional characteristics of mature CMs.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925 (2020). An informative study using metabolic maturation techniques in 2D and 3D, obtaining improved functional maturation of hiPSC-CMs.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsan, Y. C. et al. Physiologic biomechanics enhance reproducible contractile development in a stem cell derived cardiac muscle platform. Nat. Commun. 12, 6167 (2021). An informative study using micropatterning on elastomer substrates to define tissue biomechanics and improve the maturation of hiPSC-CMs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herron, T. J. et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circ. Arrhythm. Electrophysiol. 9, e003638 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martella, D. et al. Liquid crystalline networks toward regenerative medicine and tissue repair. Small 13, 1702677 (2017).

  • Lin, B. et al. Culture in glucose-depleted medium supplemented with fatty acid and 3,3′,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front. Endocrinol. 8, 253 (2017).

    Article 

    Google Scholar
     

  • Miki, K. et al. ERRγ enhances cardiac maturation with t-tubule formation in human iPSC-derived cardiomyocytes. Nat. Commun. 12, 3596 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulieri, L. A., Hasenfuss, G., Leavitt, B., Allen, P. D. & Alpert, N. R. Altered myocardial force–frequency relation in human heart failure. Circulation 85, 1743–1750 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melby, J. A. et al. Functionally integrated top–down proteomics for standardized assessment of human induced pluripotent stem cell-derived engineered cardiac tissues. J. Proteome Res. 20, 1424–1433 (2021). An informative study establishing a method allowing for the sequential assessment of functional properties and top–down proteomics for hiPSC-engineered cardiac tissue.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewoldt, J. K. and DePalma, S.J. et al. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: tissue fabrication protocols, assessment methods, and quantitative maturation metrics for benchmarking progress. Dryad https://doi.org/10.5061/dryad.ksn02v7bh (2024).

  • Lapp, H. et al. Author Correction: Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes. Sci. Rep. 11, 1643 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnabel, L. V., Abratte, C. M., Schimenti, J. C., Southard, T. L. & Fortier, L. A. Genetic background affects induced pluripotent stem cell generation. Stem Cell Res. Ther. 3, 30 (2012).

    CAS 

    Google Scholar
     

  • Rouhani, F. et al. Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet. 10, e1004432 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannhardt, I. et al. Comparison of 10 control hPSC lines for drug screening in an engineered heart tissue format. Stem Cell Reports 15, 983–998 (2020). An informative study comparing ten different control hiPSC-CM lines in EHT to demonstrate large baseline cell line-dependent differences in tissue function.

    CAS 

    Google Scholar
     

  • Marinho, P. A., Chailangkarn, T. & Muotri, A. R. Systematic optimization of human pluripotent stem cells media using design of experiments. Sci. Rep. 5, 9834 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Block, T. et al. Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Sci. Rep. 10, 19071 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Cardiac differentiation of human pluripotent stem cells using defined extracellular matrix proteins reveals essential role of fibronectin. eLife 11, e69028 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mummery, C. L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344–358 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    CAS 

    Google Scholar
     

  • Xu, C. et al. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomater. Sci. 5, 1810–1819 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Z. et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 6, 7413 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz, A. et al. Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds. J. Biomed. Mater. Res. A 107, 114–121 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hart, C. et al. Rapid nanofabrication of nanostructured interdigitated electrodes (NIDES) for long-term in vitro analysis of human induced pluripotent stem cell differentiated cardiomyocytes. Biosensors 8, 88 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, S. et al. Progressive myofibril reorganization of human cardiomyocytes on a dynamic nanotopographic substrate. ACS Appl. Mater. Interfaces 12, 21450–21462 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martewicz, S. et al. Transcriptomic characterization of a human in vitro model of arrhythmogenic cardiomyopathy under topological and mechanical stimuli. Ann. Biomed. Eng. 47, 852–865 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kujala, V. J., Pasqualini, F. S., Goss, J. A., Nawroth, J. C. & Parker, K. K. Laminar ventricular myocardium on a microelectrode array-based chip. J. Mater. Chem. B 4, 3534–3543 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pioner, J. M. et al. Isolation and mechanical measurements of myofibrils from human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 6, 885–896 (2016).

    CAS 

    Google Scholar
     

  • Strimaityte, D. et al. Contractility and calcium transient maturation in the human iPSC-derived cardiac microfibers. ACS Appl. Mater. Interfaces 14, 35376–35388 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wheelwright, M. et al. Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS ONE 13, e0194909 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kit-Anan, W. et al. Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation. Biofabrication 13, 025004 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wanjare, M. et al. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater. Sci. 5, 1567–1578 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, N. et al. Scalable biomimetic coaxial aligned nanofiber cardiac patch: a potential model for ‘clinical trials in a dish’. Front. Bioeng. Biotechnol. 8, 567842 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depalma, S. J., Davidson, C. D., Stis, A. E., Helms, A. S. & Baker, B. M. Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices. Biomater. Sci. 9, 93–107 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Extracellular recordings of patterned human pluripotent stem cell-derived cardiomyocytes on aligned fibers. Stem Cells Int. 2016, 2634013 (2016).


    Google Scholar
     

  • Chun, Y. W. et al. Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials 67, 52–64 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, M. et al. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS ONE 10, e0126338 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pushp, P. et al. Functional comparison of beating cardiomyocytes differentiated from umbilical cord-derived mesenchymal/stromal stem cells and human foreskin-derived induced pluripotent stem cells. J. Biomed. Mater. Res. A 108, 496–514 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., Chan, J. P. Y., Wu, J., Li, R. K. & Santerre, J. P. Compatibility and function of human induced pluripotent stem cell derived cardiomyocytes on an electrospun nanofibrous scaffold, generated from an ionomeric polyurethane composite. J. Biomed. Mater. Res. A 110, 1932–1943 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. Nanoscale 8, 14530–14540 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takada, T. et al. Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials 281, 121351 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pioner, J. M. et al. Optical investigation of action potential and calcium handling maturation of hiPSC-cardiomyocytes on biomimetic substrates. Int. J. Mol. Sci. 20, 3799 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huethorst, E. et al. Customizable, engineered substrates for rapid screening of cellular cues. Biofabrication 12, 025009 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carson, D. et al. Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl. Mater. Interfaces 8, 21923–21932 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, A. S. T. et al. NanoMEA: a tool for high-throughput, electrophysiological phenotyping of patterned excitable cells. Nano Lett. 20, 1561–1570 (2020).

    CAS 

    Google Scholar
     

  • Afzal, J. et al. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep. 40, 111146 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, H. et al. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 6, eabb5067 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. S. et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, L. et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ. Res. 120, 1318–1325 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feaster, T. K., Casciola, M., Narkar, A. & Blinova, K. Acute effects of cardiac contractility modulation on human induced pluripotent stem cell-derived cardiomyocytes. Physiol. Rep. 9, e15085 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303–308 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, J. et al. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater. 45, 110–120 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. J. et al. Insights into the pathogenesis of catecholaminergic polymorphic ventricular tachycardia from engineered human heart tissue. Circulation 140, 390–404 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikh, S. S. et al. Thyroid and glucocorticoid hormones promote functional t-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323–1330 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garbern, J. C. et al. Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation 141, 285–300 (2020).

  • Pasqualini, F. S., Sheehy, S. P., Agarwal, A., Aratyn-Schaus, Y. & Parker, K. K. Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell Reports 4, 340–347 (2015).

    CAS 

    Google Scholar
     

  • Buikema, J. W. et al. Wnt activation and reduced cell–cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27, 50–63 (2020).

    CAS 

    Google Scholar
     

  • Guo, J. et al. Elastomer-grafted iPSC-derived micro heart muscles to investigate effects of mechanical loading on physiology. ACS Biomater. Sci. Eng. 7, 2973–2989 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou, W. et al. A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-cardiomyocytes. Biosens. Bioelectron. 175, 112875 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroll, K. et al. Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research. Prog. Biophys. Mol. Biol. 130, 212–222 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019).

    Article 

    Google Scholar
     

  • Schwan, J. et al. Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Sci. Rep. 6, 32068 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldfracht, I. et al. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater. 92, 145–159 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blazeski, A. et al. Functional properties of engineered heart slices incorporating human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 12, 982–995 (2019).

    CAS 

    Google Scholar
     

  • Vannozzi, L. et al. Self-folded hydrogel tubes for implantable muscular tissue scaffolds. Macromol. Biosci. 18, e1700377 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Abecasis, B. et al. Unveiling the molecular crosstalk in a human induced pluripotent stem cell-derived cardiac model. Biotechnol. Bioeng. 116, 1245–1252 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Floy, M. E. et al. Direct coculture of human pluripotent stem cell-derived cardiac progenitor cells with epicardial cells induces cardiomyocyte proliferation and reduces sarcomere organization. J. Mol. Cell. Cardiol. 162, 144–157 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, M. C. et al. Follistatin-like 1 promotes proliferation of matured human hypoxic iPSC-cardiomyocytes and is secreted by cardiac fibroblasts. Mol. Ther. Methods Clin. Dev. 25, 3–16 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hookway, T. A. et al. Phenotypic variation between stromal cells differentially impacts engineered cardiac tissue function. Tissue Eng. Part A 25, 773–785 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rupert, C. E., Kim, T. Y., Choi, B. R. & Coulombe, K. L. K. Human cardiac fibroblast number and activation state modulate electromechanical function of hiPSC-cardiomyocytes in engineered myocardium. Stem Cells Int. 2020, 9363809 (2020).


    Google Scholar
     

  • Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879 (2020). An informative study parsing the impact of co-culture with cardiac fibroblasts and ECs on the maturation of hiPSC-CMs in scaffold-free cardiac spheroids.

    CAS 

    Google Scholar
     

  • Ahrens, J. H. et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Adv. Mater. 34, e2200217 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Feric, N. T. et al. Engineered cardiac tissues generated in the Biowire II: a platform for human-based drug discovery. Toxicol. Sci. 172, 89–97 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamargo, M. A. et al. MilliPillar: a platform for the generation and real-time assessment of human engineered cardiac tissues. ACS Biomater. Sci. Eng. 7, 5215–5229 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulmer, B. M. et al. Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Reports 10, 834–847 (2018).


    Google Scholar
     

  • Boudou, T. et al. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. Part A 18, 910–919 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. et al. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials 131, 111–120 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feaster, T. K. et al. A method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 117, 995–1000 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayne, R. K. et al. Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers. Lab Chip 21, 1724–1737 (2021).

    CAS 

    Google Scholar
     

  • Rogers, A. J., Fast, V. G. & Sethu, P. Biomimetic cardiac tissue model enables the adaption of human induced pluripotent stem cell cardiomyocytes to physiological hemodynamic loads. Anal. Chem. 88, 9862–9868 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, R. et al. Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues. Am. J. Physiol. Heart Circ. Physiol. 318, 1516–1524 (2020).

    Article 

    Google Scholar
     

  • Ma, X. et al. 3D printed micro-scale force gauge arrays to improve human cardiac tissue maturation and enable high throughput drug testing. Acta Biomater. 95, 319–327 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan, J. L. et al. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33, 2148–2157 (2015).

    CAS 

    Google Scholar
     

  • Kolanowski, T. J. et al. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 102, 273–286 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsano, A. et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16, 599–610 (2016).

    CAS 

    Google Scholar
     

  • Gao, L. et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712–1730 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ribeiro, A. J. S. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl Acad. Sci. USA 112, 12705–12710 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abilez, O. J. et al. Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells 36, 265–277 (2018).

    CAS 

    Google Scholar
     

  • Leonard, A. et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J. Mol. Cell. Cardiol. 118, 147–158 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bliley, J. M. et al. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Sci. Transl. Med. 13, 1817 (2021).

    Article 

    Google Scholar
     

  • Ruan, J. L. et al. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134, 1557–1567 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018). An informative study demonstrating the effectiveness of electromechanical training for the maturation of hiPSC-CMs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida, S. et al. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol. Ther. 26, 2681–2695 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell. Cardiol. 72, 296–304 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia, C. et al. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 7, 8590 (2017). An informative study demonstrating the link between metabolic substrate utilization and functional maturation of hiPSC-CMs.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B., Zhang, K., Chen, C. S. & Lejeune, E. Sarc-Graph: automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes. PLoS Comput. Biol. 17, e1009443 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toepfer, C. N. et al. SarcTrack. Circ. Res. 124, 1172–1183 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrill, E. E. et al. A validated software application to measure fiber organization in soft tissue. Biomech. Model. Mechanobiol. 15, 1467–1478 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein, J. M. et al. Software tool for automatic quantification of sarcomere length and organization in fixed and live 2D and 3D muscle cell cultures in vitro. Curr. Protoc. 2, e462 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sutcliffe, M. D. et al. High content analysis identifies unique morphological features of reprogrammed cardiomyocytes. Sci. Rep. 8, 1258 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl Acad. Sci. USA 114, E8372–E8381 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukushima, H. et al. Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells. PLoS ONE 15, e0241287 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garay, B. I. et al. Dual inhibition of MAPK and PI3K/AKT pathways enhances maturation of human iPSC-derived cardiomyocytes. Stem Cell Reports 17, 2005–2022 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ergir, E. et al. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci. Rep. 12, 17409 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, N. et al. Doxorubicin-induced cardiotoxicity is maturation dependent due to the shift from topoisomerase IIα to IIβ in human stem cell derived cardiomyocytes. J. Cell. Mol. Med. 23, 4627–4639 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jabbour, R. J. et al. In vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight 6, e144068 (2021).

  • Hatani, T. et al. Nano-structural analysis of engrafted human induced pluripotent stem cell-derived cardiomyocytes in mouse hearts using a genetic-probe APEX2. Biochem. Biophys. Res. Commun. 505, 1251–1256 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerscher, P. et al. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials 83, 383–395 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C. Y. et al. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J. Mol. Cell. Cardiol. 138, 1–11 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannhardt, I. et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports 7, 29–42 (2016).

    CAS 

    Google Scholar
     

  • Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huebsch, N. et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C Methods 21, 467–479 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, A., Toepfer, C. N., Schmid, M., Garfinkel, A. C. & Seidman, C. E. Differentiation and contractile analysis of GFP-sarcomere reporter hiPSC-cardiomyocytes. Curr. Protoc. Hum. Genet. 96, 21.12.1–21.12.12 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Maddah, M. et al. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing. Stem Cell Reports 4, 621–631 (2015).

    CAS 

    Google Scholar
     

  • Psaras, Y. et al. CalTrack: high-throughput automated calcium transient analysis in cardiomyocytes. Circ. Res. 129, 326–341 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H. et al. Deriving waveform parameters from calcium transients in human iPSC-derived cardiomyocytes to predict cardiac activity with machine learning. Stem Cell Reports 17, 556–568 (2022).

    CAS 

    Google Scholar
     

  • Shroff, S. N. et al. Voltage imaging of cardiac cells and tissue using the genetically encoded voltage sensor archon1. iScience 23, 100974 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopaschuk, G. D., Spafford, M. A. & Marsh Cardiovascular, D. R. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am. J. Physiol. 216, 1698–1705 (1991).


    Google Scholar
     

  • Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhute, V. J. et al. Metabolomics identifies metabolic markers of maturation in human pluripotent stem cell-derived cardiomyocytes. Theranostics 7, 2078–2091 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports 13, 657–668 (2019).

    CAS 

    Google Scholar
     

  • Horikoshi, Y. et al. Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells 8, 1095 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. Z. et al. A human iPSC double-reporter system enables purification of cardiac lineage subpopulations with distinct function and drug response profiles. Cell Stem Cell 24, 802–811 (2019).

    CAS 

    Google Scholar
     

  • Da Rocha, A. M. et al. hiPSC-CM monolayer maturation state determines drug responsiveness in high throughput pro-arrhythmia screen. Sci. Rep. 7, 13834 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huebsch, N. et al. Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat. Biomed. Eng. 6, 372–388 (2022). An informative study using microfluidic chips and metabolic maturation to improve the alignment and maturation of hiPSC-CMs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemcke, H., Skorska, A., Lang, C. I., Johann, L. & David, R. Quantitative evaluation of the sarcomere network of human hiPSC-derived cardiomyocytes using single-molecule localization microscopy. Int. J. Mol. Sci. 21, 2819 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. A net mold-based method of biomaterial-free three-dimensional cardiac tissue creation. Tissue Eng. Part C Methods 25, 243–252 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piccini, I., Rao, J., Seebohm, G. & Greber, B. Human pluripotent stem cell-derived cardiomyocytes: genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue. Genom. Data 4, 69–72 (2015).


    Google Scholar
     

  • Tsui, J. H. et al. Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials 272, 120764 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyette, J. P. et al. Bioengineering human myocardium on native extracellular matrix. Circ. Res. 118, 56–72 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pretorius, D. et al. Layer-by-layer fabrication of large and thick human cardiac muscle patch constructs with superior electrophysiological properties. Front. Cell Dev. Biol. 9, 670504 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng, L. et al. Rapid electrical stimulation increased cardiac apoptosis through disturbance of calcium homeostasis and mitochondrial dysfunction in human induced pluripotent stem cell-derived cardiomyocytes. Cell. Physiol. Biochem. 47, 1167–1180 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dickerson, D. A. Advancing engineered heart muscle tissue complexity with hydrogel composites. Adv. Biol. 7, e2200067 (2023).

  • Tani, H. et al. Heart-derived collagen promotes maturation of engineered heart tissue. Biomaterials 299, 122174 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser, N. J., Kant, R. J., Minor, A. J. & Coulombe, K. L. K. Optimizing blended collagen–fibrin hydrogels for cardiac tissue engineering with human iPSC-derived cardiomyocytes. ACS Biomater. Sci. Eng. 5, 887–899 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv, W., Babu, A., Morley, M. P., Musunuru, K. & Guerraty, M. Resource of gene expression data from a multiethnic population cohort of induced pluripotent cell-derived cardiomyocytes. Circ. Genom. Precis. Med. 17, e004218 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soepriatna, A. H. et al. Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues. PLoS ONE 18, e0280406 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olivetti, G. et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell. Cardiol. 28, 1463–1477 (1996).

  • Squire, J. M. Architecture and function in the muscle sarcomere. Curr. Opin. Struct. Biol. 7, 247–257 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin Gerdes, A. et al. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86, 426–430 (1992).

    Article 

    Google Scholar
     

  • Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porter, G. A. et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 75–81 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagueh, S. F. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110, 155–162 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Der Velden, J. et al. Isometric tension development and its calcium sensitivity in skinned myocyte-sized preparations from different regions of the human heart. Cardiovasc. Res. 42, 706–719 (1999).

    Article 

    Google Scholar
     

  • Hasenfuss, G. et al. Energetics of isometric force development in control and volume-overload human myocardium comparison with animal species. Circ. Res. 68, 836–846 (1990).

    Article 

    Google Scholar
     

  • Tenreiro, M. F., Louro, A. F., Alves, P. M. & Serra, M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen. Med. 6, 30 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drouin, E., Charpentier, F., Gauthier, C., Laurent, K. & Le Marec, H. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J. Am. Coll. Cardiol. 26, 185–192 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koncz, I. et al. Electrophysiological effects of ivabradine in dog and human cardiac preparations: potential antiarrhythmic actions. Eur. J. Pharmacol. 668, 419–426 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dangman, K. H. et al. Electrophysiologic characteristics of human ventricular and Purkinje fibers. Circulation 65, 362–368 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carafoli, E., Santella, L., Branca, D. & Brini, M. Generation, control, and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol. 36, 107–260 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar