Search
Close this search box.

Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast – Nature Communications

  • Scown, C. D. & Keasling, J. D. Sustainable manufacturing with synthetic biology. Nat. Biotechnol. 40, 304–307 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keasling, J. et al. Microbial production of advanced biofuels. Nat. Rev. Microbiol. 19, 701–715 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Biofuels for a sustainable future. Cell 184, 1636–1647 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertel, T. W. et al. Effects of us maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60, 223–231 (2010).

    Article 

    Google Scholar
     

  • Liu, Z., Wang, K., Chen, Y., Tan, T. & Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 3, 274–CO288 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Baumschabl, M. et al. Conversion of CO2 into organic acids by engineered autotrophic yeast. Proc. Natl Acad. Sci. USA 119, e2211827119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi, F., Van’t Klooster, J. S., Ruiz, S. J. & Poolman, B. Regulation of amino acid transport in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 83, 10–1128 (2019).

    Article 

    Google Scholar
     

  • Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 1782–1786 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarzycki, J., Brecht, V., Muller, M. & Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl Acad. Sci. USA 106, 21317–21322 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werpy, T. & Petersen, G. Top value added chemicals from biomass volume I—Results of screening for potential candidates from sugars and synthesis gas. No. DOE/GO-102004-1992. National Renewable Energy Lab. (NREL), Golden, CO (United States) (2004).

  • Zabed, H. M. et al. Biocatalytic gateway to convert glycerol into 3-hydroxypropionic acid in waste-based biorefineries: Fundamentals, limitations, and potential research strategies. Biotechnol. Adv. 62, 108075 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dishisha, T., Pyo, S. H. & Hatti-Kaul, R. Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb. Cell Fact. 14, 200 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhagwat, S. S. et al. Sustainable production of acrylic acid via 3-hydroxypropionic acid from lignocellulosic biomass. ACS Sustain. Chem. Eng. 9, 16659–16669 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, W., Cao, X., Gao, J. & Zhou, Y. J. Overproduction of 3-hydroxypropionate in a super yeast chassis. Bioresour. Technol. 361, 127690 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3589 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Canelas, A. B. et al. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat. Commun. 1, 145 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hugler, M., Menendez, C., Schagger, H. & Fuchs, G. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Bacteriol. 184, 2404–2410 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab. Eng. 34, 104–111 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qin, N. et al. Rewiring central carbon metabolism ensures increased provision of acetyl-CoA and NADPH required for 3-OH-propionic acid production. ACS Synth. Biol. 9, 3236–3244 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X., Yang, X., Shen, Y., Hou, J. & Bao, X. Increasing malonyl-CoA derived product through controlling the transcription regulators of phospholipid synthesis in Saccharomyces cerevisiae. ACS Synth. Biol. 6, 905–912 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang, L., Holland, P., Lu, H., Bergenholm, D. & Nielsen, J. Integrated analysis of the yeast NADPH-regulator Stb5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism. FEMS Yeast Res. 18, foy091 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Christodoulou, D. et al. Reserve Flux Capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Syst. 6, 569–578.e567 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. E., Jang, I. S., Sung, B. H., Kim, S. C. & Lee, J. Y. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae. Sci. Rep. 8, 15820 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curran, K. A. et al. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat. Commun. 5, 4002 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, M., Zhu, X., Bi, C., Ma, Y. & Zhang, X. Improving succinate productivity by engineering a cyanobacterial CO2 concentrating system (CCM) in Escherichia coli. Biotechnol. J. 12, 1700199 (2017).

  • Yu, J. H. et al. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Biotechnol. Bioeng. 113, 1531–1541 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguilera, J., Van Dijken, J. P., De Winde, J. H. & Pronk, J. T. Carbonic anhydrase (Nce103p): an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochem. J. 391, 311–316 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordat, E. & Reithmeier, R. A. Structure, function, and trafficking of SLC4 and SLC26 anion transporters. Curr. Top. Membr. 73, 1–67 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jennings, M. L., Howren, T. R., Cui, J., Winters, M. & Hannigan, R. Transport and regulatory characteristics of the yeast bicarbonate transporter homolog Bor1p. Am. J. Physiol. Cell Physiol. 293, C468–C476 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alper, S. L. & Sharma, A. K. The SLC26 gene family of anion transporters and channels. Mol. Asp. Med. 34, 494–515 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Cherest, H. et al. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145, 627–635 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soleimani, M. SLC26 Cl/HCO3 exchangers in the kidney: roles in health and disease. Kidney Int. 84, 657–666 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. Ptc7p dephosphorylates select mitochondrial proteins to enhance metabolic function. Cell Rep. 18, 307–313 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X., Niemi, N. M., Coon, J. J. & Pagliarini, D. J. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J. Biol. Chem. 292, 11751–11759 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 1549–1558.e1514 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Usaite, R. et al. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol. Syst. Biol. 5, 319 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. The expression modulation of the key enzyme acc for highly efficient 3-hydroxypropionic acid production. Front. Microbiol. 13, 902848 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, S., Chen, Y., Siewers, V. & Nielsen, J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5, e01130–01114 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son, H. F. et al. Structural insight into bi-functional malonyl-CoA reductase. Environ. Microbiol. 22, 752–765 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujisawa, H., Nagata, S. & Misono, H. Characterization of short-chain dehydrogenase/reductase homologues of Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C). Biochim. Biophys. Acta 1645, 89–94 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z. et al. Expanding the product portfolio of fungal type I fatty acid synthases. Nat. Chem. Biol. 13, 360–362 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, T. et al. A biosynthesis pathway for 3-hydroxypropionic acid production in genetically engineered Saccharomyces cerevisiae. Green. Chem. 23, 4502–4509 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qin, N., Li, L., Wang, Z. & Shi, S. Microbial production of odd-chain fatty acids. Biotechnol. Bioeng. 120, 917–931 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Keren, L. et al. Promoters maintain their relative activity levels under different growth conditions. Mol. Syst. Biol. 9, 701 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiltunen, J. K. et al. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 27, 35–64 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peetermans, A., Foulquie-Moreno, M. R. & Thevelein, J. M. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microb. Cell 8, 111–130 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kildegaard, K. R. et al. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab. Eng. 26, 57–66 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X., Williams, T. C., Divne, C., Pretorius, I. S. & Paulsen, I. T. Evolutionary engineering in Saccharomyces cerevisiae reveals a Trk1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol. Biofuels 12, 97 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chun, A. Y., Yunxiao, L., Ashok, S., Seol, E. & Park, S. Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W. Biotech. and Biopro. Eng 19, 858–865 (2014).

    CAS 

    Google Scholar
     

  • Van Maris, A. J., Konings, W. N., van Dijken, J. P. & Pronk, J. T. Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab. Eng. 6, 245–255 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. J., Crook, N., Sun, J. & Alper, H. S. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of Ssb1. J. Ind. Microbiol. Biotechnol. 43, 87–96 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek, S. H., Kwon, E. Y., Kim, S. Y. & Hahn, J. S. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae. Sci. Rep. 6, 34812 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherwood, P. W. & Carlson, M. Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p. Proc. Natl Acad. Sci. USA 96, 7415–7420 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darbani, B., Stovicek, V., van der Hoek, S. A. & Borodina, I. Engineering energetically efficient transport of dicarboxylic acids in yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 116, 19415–19420 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, S. H. et al. Improvement of d-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering. Biotechnol. J. 12, 1700015 (2017).

  • Dato, L. et al. Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae. Microb. Cell Fact. 13, 147 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nygard, Y. et al. The diverse role of Pdr12 in resistance to weak organic acids. Yeast 31, 219–232 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viegas, C. A., Sebastiao, P. B., Nunes, A. G. & Sa-Correia, I. Activation of plasma membrane H(+)-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures. Appl. Environ. Microbiol. 61, 1904–1909 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orij, R., Brul, S. & Smits, G. J. Intracellular pH is a tightly controlled signal in yeast. Biochem. Biophys. Acta 1810, 933–944 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugiyama, M., Akase, S. P., Nakanishi, R., Kaneko, Y. & Harashima, S. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae. J. Biosci. Bioeng. 122, 415–420 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casal, M., Paiva, S., Andrade, R. P., Gancedo, C. & Leão, C. L. The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J. Bacteriol. 181, 2620–2623 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacheco, A. et al. Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Res 12, 375–381 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek, S. H., Kwon, E. Y., Kim, Y. H. & Hahn, J. S. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 100, 2737–2748 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serre, V. et al. Half of Saccharomyces cerevisiae carbamoyl phosphate synthetase produces and channels carbamoyl phosphate to the fused aspartate transcarbamoylase domain. J. Biol. Chem. 274, 23794–23801 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali, E. S. et al. The mTORC1-SLC4A7 axis stimulates bicarbonate import to enhance de novo nucleotide synthesis. Mol. Cell 82, 3284–3298.e7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler, M. E. & Ramos-Montanez, S. Biosynthesis of histidine. EcoSal. Plus 3, 10–1128 (2009).

  • Alam, M. T. et al. The metabolic background is a global player in Saccharomyces gene expression epistasis. Nat. Microbiol. 1, 15030 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, C. et al. Auxotrophs compromise cell growth and fatty acid production in Saccharomyces cerevisiae. Biotechnol. J. 18, e2200510 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, R. et al. Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast. Nat. Commun. 11, 1881 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malubhoy, Z. et al. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 21, 102 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez Garzon, C. S. & Straathof, A. J. Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 32, 873–904 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez, A., De La Cera, T., Herrero, P. & Moreno, F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem. J. 355, 625–631 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoddard, P. R. et al. Polymerization in the actin ATPase clan regulates hexokinase activity in yeast. Science 367, 1039–1042 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakker, B. M. et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 15–37 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno, F. & Herrero, P. The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 83–90 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, N. et al. Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast. Cell 186, 748–763 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Z., Huang, M., Chen, Y., Siewers, V. & Nielsen, J. Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nat. Commun. 9, 3059 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steidle, E. A. et al. A novel inositol pyrophosphate phosphatase in Saccharomyces cerevisiae. J. Biol. Chem. 291, 6772–6783 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szijgyarto, Z., Garedew, A., Azevedo, C. & Saiardi, A. Influence of inositol pyrophosphates on cellular energy dynamics. Science 334, 802–805 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borodina, I. et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab. Eng. 27, 57–64 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Litwack, G. Human Biochemistry 403–440 (Elsevier Inc, 2022).

  • Müller, L. J. et al. A Guideline for life cycle assessment of carbon capture and utilization. Front. Energy Res. 8, 15 (2020).

    Article 
    ADS 

    Google Scholar
     

  • DeCicco, J. M. et al. Carbon balance effects of U.S. biofuel production and use. Clim. Change 138, 667–680 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marcellin, E. et al. Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green. Chem. 18, 3020–3028 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e1212 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. Y., Jung, H. W., Tsuei, C. Y. & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182, 933–946.e914 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antonovsky, N. et al. Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115–125 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, G. et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat. Catal. 4, 395–406 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat. Commun. 10, 4976 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. The eisosomes contribute to acid tolerance of yeast by maintaining cell membrane integrity. Food Microbiol. 110, 104157 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray, N. et al. High-speed quantitative UPLC-MS analysis of multiple amines in human plasma and serum via precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate: application to acetaminophen-induced liver failure. Anal. Chem. 89, 2478–2487 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., Jaroszewski, L., Iyer, M., Sedova, M. & Godzik, A. FATCAT 2.0: towards a better understanding of the structural diversity of proteins. Nucleic Acids Res. 48, W60–W64 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canelas, A. B. et al. Quantitative evaluation of intracellular metabolite extraction techniques foryeast metabolomics. Anal. Chem. 81, 7379–7389 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rostron, K. A. & Lawrence, C. L. Nile red staining of neutral lipids in yeast. Methods Mol. Biol. 1560, 219–229 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S., Si, T., Wang, M. & Zhao, H. Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth. Biol. 4, 1308–1315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • David, F., Nielsen, J. & Siewers, V. Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae. ACS Synth. Biol. 5, 224–233 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Su, M., Wang, Z., Nielsen, J. & Liu, Z. Rewiring regulation on respiro-fermentative metabolism relieved Crabtree effects in Saccharomyces cerevisiae. Synth. Syst. Biotech. 7, 1034–1043 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kildegaard, K. R. et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb. Cell Fact. 15, 53 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production. Biotech. Biofuels. Bioprod. 16, 1–11 (2023).

    Article 

    Google Scholar