Search
Close this search box.

In vitro influence of PEG functionalized ZnO–CuO nanocomposites on bacterial growth – Scientific Reports

  • Cioffi, N. & Rai, M. Nano-antimicrobials: Progress and prospects. Nano-Antimicrobials: Progress and Prospects vol. 9783642244 (2012).

  • Ang, J. Y., Ezike, E. & Asmar, B. I. Antibacterial resistance. Indian J. Pediatr. 71, 229–239 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shlaes, D. M. & Spellberg, B. Overcoming the challenges to developing new antibiotics. Curr. Opin. Pharmacol. 12, 522–526 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Reygaert, W. C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4, 482 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Moslamy, S. H., Elnouby, M. S., Rezk, A. H. & El-Fakharany, E. M. Scaling-up strategies for controllable biosynthetic ZnO NPs using cell free-extract of endophytic Streptomyces albus: characterization, statistical optimization, and biomedical activities evaluation. Sci. Rep. 13, 1–22 (2023).

    Article 

    Google Scholar
     

  • Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015).

    Article 

    Google Scholar
     

  • Sahoo, S. Socio-ethical issues and nanotechnology development: Perspectives from India. 2010 10th IEEE Conference Nanotechnology, NANO 2010 1205–1210 (2010). https://doi.org/10.1109/NANO.2010.5697887.

  • Thambiliyagodage, C. Efficient photocatalysis of carbon coupled TiO2 to degrade pollutants in wastewater—A review. Environ. Nanotechnol. Monit. Manag. 18, 100737 (2022).


    Google Scholar
     

  • Gunathilaka, H., Thambiliyagodage, C., Usgodaarchchi, L. & Angappan, S. Effect of surfactants on morphology and textural parameters of silica nanoparticles derived from paddy husk and their efficient removal of methylene blue. Int. Conf. Innov. Energy Eng. Clean. Prod. IEE CP 21, (2021).

  • Ye, L. et al. Noble metal-based nanomaterials as antibacterial agents. J. Alloys Compd. 904, 164091 (2022).

    Article 

    Google Scholar
     

  • Jafari, A. et al. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines. Microb. Pathog. 110, 335–344 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mahor, A. et al. Carbon-based nanomaterials for delivery of biologicals and therapeutics: a cutting-edge technology. C 7, 19 (2021).


    Google Scholar
     

  • Liu, Q., Zhang, A., Wang, R., Zhang, Q. & Cui, D. A review on metal- and metal oxide-based nanozymes: Properties, mechanisms, and applications. Nano-Micro Lett. 13, 1–53 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L. & Stout, D. A. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomed. 12, 3941 (2017).

    Article 

    Google Scholar
     

  • Wang, Z. & Tang, M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J. Appl. Toxicol. 41, 683–700 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L., Jiang, Y., Ding, Y., Povey, M. & York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479–489 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Song, W. et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 199, 389–397 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Habib, S. et al. Antibacterial and cytotoxic effects of biosynthesized zinc oxide and titanium dioxide nanoparticles. Microorganisms 11, 1363 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalid, A. et al. Biologically reduced zinc oxide nanosheets using phyllanthus emblica plant extract for antibacterial and dye degradation studies. J. Chem. 2023 (2023).

  • Khalid, A. et al. Structural, optical, and antibacterial efficacy of pure and zinc-doped copper oxide against pathogenic bacteria. Nanomaterials. 11, 451 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalid, A. et al. Synthesis of boron-doped zinc oxide nanosheets by using phyllanthus emblica leaf extract: A sustainable environmental applications. Front. Chem. 10, 930620 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basit, R. A. et al. Successive photocatalytic degradation of methylene blue by ZnO, CuO and ZnO/CuO synthesized from Coriandrum sativum plant extract via green synthesis technique. Crystals 13, 281 (2023).

    Article 

    Google Scholar
     

  • Khalid, A. et al. Structural, optical, and renewable energy-assisted photocatalytic dye degradation studies of ZnO, CuZnO, and CoZnO nanostructures for wastewater treatment. Separations 10, 184 (2023).

    Article 

    Google Scholar
     

  • Dadi, R., Azouani, R., Traore, M., Mielcarek, C. & Kanaev, A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 104, 109968 (2019).

    Article 

    Google Scholar
     

  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C. & Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308–1316 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Slavin, Y. N., Asnis, J., Häfeli, U. O. & Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, (2017).

  • Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).

    Article 

    Google Scholar
     

  • Sonia, S. et al. Synthesis of hierarchical CuO nanostructures: Biocompatible antibacterial agents for Gram-positive and Gram-negative bacteria. Curr. Appl. Phys. 16, 914–921 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, P., Ding, X., Yang, Y. Y. & Xu, Q. H. Metal nanoparticles for diagnosis and therapy of bacterial infection. Adv. Healthc. Mater. 7 (2018).

  • Meghana, S., Kabra, P., Chakraborty, S. & Padmavathy, N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 5, 12293–12299 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Guan, G. et al. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. J. Hazard. Mater. 402, 123542 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Javed, R., Ahmed, M., Haq, I. ul, Nisa, S. & Zia, M. PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater. Sci. Eng. C 79, 108–115 (2017).

  • Alipour, A., Javanshir, S. & Peymanfar, R. Preparation, characterization and antibacterial activity investigation of hydrocolloids based irish moss/ZnO/CuO bio-based nanocomposite films. J. Clust. Sci. 29, 1329–1336 (2018).

    Article 

    Google Scholar
     

  • Das, D., Nath, B. C., Phukon, P. & Dolui, S. K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B Biointerfaces 101, 430–433 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • D’souza, A. A. & Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13, 1257–1275 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Milton Harris, J. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Milton Harris, J., Martin, N. E. & Modi, M. Pegylation: A novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001).

  • Kyene, M. O. et al. Synthesis and characterization of ZnO nanomaterial from Cassia sieberiana and determination of its anti-inflammatory, antioxidant and antimicrobial activities. Sci. Afr. 19, e01452 (2023).


    Google Scholar
     

  • Gunalan, S., Sivaraj, R. & Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int. 22, 693–700 (2012).

    Article 

    Google Scholar
     

  • Raja, F. N. S., Worthington, T. & Martin, R. A. The antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: alone and in combination. Biomed. Mater. 18, 045003 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71–79 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Abdallah, E. M. et al. Nanomaterials on bacterial growth. (2022).

  • Barry, A. L., Coyle, M. B., Thornsberry, C., Gerlach, E. H. & Hawkinson, R. W. Methods of measuring zones of inhibition with the Bauer–Kirby disk susceptibility test. J. Clin. Microbiol. 10, 885–889 (1979).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mogana, R., Adhikari, A., Tzar, M. N., Ramliza, R. & Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from canarium patentinervium miq. Against bacterial clinical isolates. BMC Complement. Med. Ther. 20, 1–11 (2020).

    Article 

    Google Scholar
     

  • Andrews, J. M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5–16 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Bhande, R. M., Khobragade, C. N., Mane, R. S. & Bhande, S. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections. J. Nanopart. Res. 15 (2013).

  • Silambarasan, M., Saravanan, S. & Soga, T. Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles. Int. J. ChemTech Res. 7, 1644–1650 (2015).


    Google Scholar
     

  • Wang, J. X. et al. Free-standing ZnO–CuO composite nanowire array films and their gas sensingproperties. Nanotechnology 22, 325704 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ananth, A., Dharaneedharan, S., Heo, M. S. & Mok, Y. S. Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance. Chem. Eng. J. 262, 179–188 (2015).

    Article 

    Google Scholar
     

  • Jones, N., Ray, B., Ranjit, K. T. & Manna, A. C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Adnan, R. M., Mezher, M., Abdallah, A. M., Awad, R. & Khalil, M. I. Synthesis, Characterization, and antibacterial activity of Mg-doped CuO nanoparticles. Molecules 28, (2023).

  • Azizi-Lalabadi, M., Ehsani, A., Divband, B. & Alizadeh-Sani, M. Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 9, 1–10 (2019).

    Article 

    Google Scholar
     

  • Naveen, K. V., Saravanakumar, K., Sathiyaseelan, A. & Wang, M. H. Preparation, characterization, and synergistic antibacterial activity of mycosynthesized, PEGylated CuO nanoparticles combined tetracycline hydrochloride. J. Drug Deliv. Sci. Technol. 76, 1–2 (2022).


    Google Scholar
     

  • Djeussi, D. E. et al. Antibacterial activities of selected edible plants extracts against multidrug-resistant gram-negative bacteria. BMC Complement. Altern. Med. 13 (2013).

  • Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001).

    Article 

    Google Scholar
     

  • Mousavi, S. F., Hossaini, Z., Rostami-Charati, F. & Nami, N. Synthesis of benzochromene derivatives using reusable Fe3O4/ZnO magnetic nanoparticles: Study of antioxidant and antibacterial activity. Polycycl. Aromat. Compd. 42, 6732–6749. https://doi.org/10.1080/10406638.2021.1991390 (2021).

    Article 

    Google Scholar
     

  • Khan, B. et al. Enhanced antibacterial activity of size-controlled silver and polyethylene glycol functionalized silver nanoparticles. Chem. Pap. 75, 743–752 (2021).

    Article 

    Google Scholar
     

  • Li, D. et al. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact. Mater. 16, 47–56 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruslind, L. Microbiology. (Open Oregon State, 2017).

  • Stensberg, M. C. et al. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond). 6, 879–898 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Čapek, J. & Roušar, T. Detection of oxidative stress induced by nanomaterials in cells—The roles of reactive oxygen species and glutathione. Molecules 26 (2021).

  • Singh, R., Cheng, S. & Singh, S. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech 10, 1–13 (2020).

    Article 

    Google Scholar
     

  • Lefatshe, K., Mola, G. T. & Muiva, C. M. Reduction of hazardous reactive oxygen species (ROS) production of ZnO through Mn inclusion for possible UV-radiation shielding application. Heliyon 6, e04186 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimkpa, C. O. et al. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 14 (2012).

  • Cai, X. et al. Synergistic antibacterial zinc ions and cerium ions loaded α-zirconium phosphate. Mater. Lett. 67, 199–201 (2012).

    Article 

    Google Scholar
     

  • Li, Y., Zhang, W., Niu, J. & Chen, Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6, 5164–5173 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, S., Tang, F., Tang, L. & Li, L. Synthesis of Cu-nanoparticle hydrogel with self-healing and photothermal properties. ACS Appl. Mater. Interfaces 9, 20895–20903 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related MicroRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl. Mater. Interfaces 9, 159–166 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 9, 30470–30479 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sevinç, B. A. & Hanley, L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. Part B Appl. Biomater. 94B, 22–31 (2010).

  • Li, M., Zhu, L. & Lin, D. Toxicity of ZnO nanoparticles to escherichia Coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Premanathan, M., Karthikeyan, K., Jeyasubramanian, K. & Manivannan, G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7, 184–192 (2011).

    Article 

    Google Scholar
     

  • Phan, T. N., Buckner, T., Sheng, J., Baldeck, J. D. & Marquis, R. E. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 19, 31–38 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Koo, H., Sheng, J., Nguyen, P. T. M. & Marquis, R. E. Co-operative inhibition by fluoride and zinc of glucosyl transferase production and polysaccharide synthesis by mutans streptococci in suspension cultures and biofilms. FEMS Microbiol. Lett. 254, 134–140 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Cummins, D. Zinc citrate/Triclosan: A new anti-plaque system for the control of plaque and the prevention of gingivitis: Short-term clinical and mode of action studies. J. Clin. Periodontol. 18, 455–461 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6, 4349–4368 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?. J. Hazard. Mater. 308, 328–334 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Chen, Y., Westerhoff, P. & Crittenden, J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 43, 4249–4257 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Azam, A. et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012).

    Article 

    Google Scholar
     

  • Rolfe, M. D. et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194, 686–701 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Fan, D., Chen, W. & Terentjev, E. M. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci. Rep. 5, 1–11 (2015).


    Google Scholar
     

  • Chien, A. C., Hill, N. S. & Levin, P. A. Cell size control in bacteria. Curr. Biol. 22, (2012).

  • Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J. & Shah, S. I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5, 244–249 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Brayner, R. et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Adams, L. K., Lyon, D. Y. & Alvarez, P. J. J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, 3527–3532 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, T. et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Lv, X., Li, Y., Wang, Y. & Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sawai, J. et al. Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29, 627–633 (1996).

    Article 

    Google Scholar
     

  • Weyesa, A., Eswaramoorthy, R., Melaku, Y. & Mulugeta, E. Antibacterial, docking, DFT and ADMET properties evaluation of chalcone-sulfonamide derivatives prepared using ZnO nanoparticle catalysis. Adv. Appl. Bioinf. Chem. 14, 133–144 (2021).


    Google Scholar
     

  • Ayala-Núñez, N. V., LaraVillegas, H. H., Del Carmen Ixtepan Turrent, L. & Rodríguez Padilla, C. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant staphylococcus aureus: Nanoscale does matter. Nanobiotechnology 5, 2–9 (2009).

    Article 

    Google Scholar
     

  • Sykes, J. E. Canine and feline infectious diseases. Canine Feline Infect. Dis. https://doi.org/10.1016/C2009-0-41370-9 (2013).

    Article 

    Google Scholar
     

  • Kotb, S. & Sayed, M. Bactericidal efficiency of silver nanoparticles against methicillin-resistance (MRSA) and methicillin-susceptible staphylococcus aureus (MSSA) strains isolated from milk and its surrounding milking environment. Assiut Vet. Med. J. 61, 194–200 (2015).

    Article 

    Google Scholar
     

  • Ajitha, B., Ashok Kumar Reddy, Y. & Sreedhara Reddy, P. Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technol. 269, 110–117 (2015).

    Article 

    Google Scholar
     

  • Guo, D. et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34, 7884–7894 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Greulich, C. et al. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater. 7, 347–354 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, C., Zhang, Y., Zeng, X., Zeng, Y. & Wang, Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid Interface Sci. 288, 444–448 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dobryszycki, J. & Biallozor, S. On some organic inhibitors of zinc corrosion in alkaline media. Corros. Sci. 43, 1309–1319 (2001).

    Article 

    Google Scholar
     

  • Bharadwaj, S. et al. Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model. J. Biomed. Biotechnol. 2011 (2011).

  • Carreira, C. D. M., Dos Santos, S. S. F., Jorge, A. O. C. & Lage-Marques, J. L. Antimicrobial effect of intracanal substances. J. Appl. Oral Sci. 15, 453 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborti, S. et al. PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic. Biol. Med. 103, 35–47 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Luna-Hernández, E. et al. Combined antibacterial/tissue regeneration response in thermal burns promoted by functional chitosan/silver nanocomposites. Int. J. Biol. Macromol. 105, 1241–1249 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Brunner, T. J. et al. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kasemets, K., Ivask, A., Dubourguier, H. C. & Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. Vitr. 23, 1116–1122 (2009).

    Article 

    Google Scholar
     

  • Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Antifungal activity of ZnO nanoparticles—The role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sawai, J. et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86, 521–522 (1998).

    Article 

    Google Scholar
     

  • Zhang, L., Ding, Y., Povey, M. & York, D. ZnO nanofluids—A potential antibacterial agent. Prog. Nat. Sci. 18, 939–944 (2008).

    Article 

    Google Scholar
     

  • Jalal, R. et al. ZnO nanofluids: Green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121, 198–201 (2010).

    Article 

    Google Scholar
     

  • Widiarti, N., Sae, J. K. & Wahyuni, S. Synthesis CuO–ZnO nanocomposite and its application as an antibacterial agent. IOP Conf. Ser. Mater. Sci. Eng. 172, 012036 (2017).

    Article 

    Google Scholar
     

  • Emami‐Karvani, Z. & Chehrazi, P. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 5 (2012).

  • Riahi, S. et al. Bactericidal activity of ZnO nanoparticles against multidrug-resistant bacteria. J. Mol. Liq. 387, 122596 (2023).

    Article 

    Google Scholar
     

  • Adeyemi, J. O., Onwudiwe, D. C. & Oyedeji, A. O. Biogenic synthesis of CuO, ZnO, and CuO–ZnO nanoparticles using leaf extracts of Dovyalis caffra and their biological properties. Molecules 27, 3206 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rishikesan, S. & Basha, M. A. M. Synthesis, characterization and evaluation of antimicrobial, antioxidant & anticancer activities of copper doped zinc oxide nanoparticles. Acta Chim. Slov. 67 (2020).