
Ulpiano, C., da Silva, C. L. & Monteiro, G. A. Mesenchymal stromal cells (MSCs): a promising tool for cell-based angiogenic therapy. Curr. Gene Ther.21(5), 382–405 (2021).
Thalakiriyawa, D. S., Jayasooriya, P. R. & Dissanayaka, W. L. Regenerative potential of mesenchymal stem cell-derived extracellular vesicles. Curr. Mol. Med.22(2), 98–119 (2022).
Zriek, F., Di Battista, J. A. & Alaaeddine, N. Mesenchymal stromal cell secretome: Immunomodulation, tissue repair and effects on neurodegenerative conditions. Curr. Stem Cell. Res. Ther.16(6), 656–669 (2021).
Maacha, S. et al. Paracrine mechanisms of mesenchymal stromal cells in angiogenesis. Stem Cells Int.2020, 4356359 (2020).
Bronckaers, A. et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol. Ther.143(2), 181–196 (2014).
Miceli, V. et al. Therapeutic properties of mesenchymal stromal/stem sells: the need of cell priming for cell-free therapies in regenerative medicine. Int. J. Mol. Sci.22(2), 763 (2021).
Tian, Y. et al. The role of hypoxic mesenchymal stem cells in tumor immunity. Int. Immunopharmacol.112, 109172 (2022).
Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, Von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem.54(4), 385–395 (2006).
Crisan, M. Transition of mesenchymal stem/stromal cells to endothelial cells. Stem Cell. Res. Ther.4(4), 95 (2013).
Ghajar, C. M. et al. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp. Cell. Res.316(5), 813–825 (2010).
Annabi, B., Naud, E., Lee, Y. T., Eliopoulos, N. & Galipeau, J. Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J. Cell. Biochem.91(6), 1146–1158 (2004).
Li, G. C. et al. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol. Lett.11(2), 1089–1094 (2016).
Sun, C. et al. Mesenchymal stem cells promote glioma neovascularization in vivo by fusing with cancer stem cells. BMC Cancer. 19(1), 1240 (2019).
Wang, J. et al. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget. 6(40), 42825–42837 (2015).
Folberg, R. & Maniotis, A. J. Vasculogenic mimicry. APMIS. 112(7–8), 508–525 (2004).
Hendrix, M. J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. U S A. 98(14), 8018–8023 (2001).
Hess, A. R., Seftor, E. A., Seftor, R. E. & Hendrix, M. J. Phosphoinositide 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res.63(16), 4757–4762 (2003).
Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol.155(3), 739–752 (1999).
Paulis, Y. W., Soetekouw, P. M., Verheul, H. M., Tjan-Heijnen, V. C. & Griffioen, A. W. Signalling pathways in vasculogenic mimicry. Biochim. Biophys. Acta. 1806(1), 18–28 (2010).
Zhao, N. et al. Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Med. Oncol.29(5), 3599–3607 (2012).
Rytlewski, J. A., Alejandra Aldon, M., Lewis, E. W. & Suggs, L. J. Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs. Microvasc Res.99, 26–35 (2015).
Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell. 112(1), 19–28 (2003).
Nagle, R. B. & Cress, A. E. Metastasis update: human prostate carcinoma invasion via tubulogenesis. Prostate Cancer. 2011, 249290 (2011).
Recouvreux, M. S. et al. FOXC2 promotes vasculogenic mimicry in ovarian cancer. Cancers (Basel). 14(19), 4851 (2022).
Han, C. et al. Phosphorylation of STAT3 promotes vasculogenic mimicry by inducing epithelial-to-mesenchymal transition in colorectal cancer. Technol. Cancer Res. Treat.16(6), 1209–1219 (2017).
de la Hernández, O. N. et al. Regulation networks driving vasculogenic mimicry in solid tumors. Front. Oncol.9, 1419 (2020).
Zhou, H., Yuan, Y. & Qian, H. Expression of STAT3 and vasculogenic mimicry in gallbladder carcinoma promotes invasion and metastasis. Exp. Ther. Med.22(1), 738 (2021).
Gresseau, L., Roy, M. E., Duhamel, S. & Annabi, B. A signaling crosstalk links SNAIL to the 37/67 kDa Laminin-1 Receptor Ribosomal Protein SA and regulates the acquisition of a cancer stem cell molecular signature in U87 glioblastoma neurospheres. Cancers (Basel). 14(23), 5944 (2022).
Pesapane, A. et al. Discovery of new small molecules inhibiting 67 kDa laminin receptor interaction with laminin and cancer cell invasion. Oncotarget. 6(20), 18116–18133 (2015).
Li, M. et al. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell. Res. Ther.13(1), 146 (2022).
Nicolas, J. et al. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 21(6), 1968–1994 (2020).
Au, P., Tam, J., Fukumura, D. & Jain, R. K. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 111(9), 4551–4558 (2008).
Kachgal, S. & Putnam, A. J. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 14(1), 47–59 (2011).
Zhou, B. et al. A novel function for the haemopoietic supportive murine bone marrow MS-5 mesenchymal stromal cell line in promoting human vasculogenesis and angiogenesis. Br. J. Haematol.157(3), 299–311 (2012).
Merimi, M. et al. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front. Cell. Dev. Biol.9, 661532 (2021).
Evans, C. E., Iruela-Arispe, M. L. & Zhao, Y. Y. Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. Am. J. Pathol.191(1), 52–65 (2021).
Lee, E. J., Park, H. W., Jeon, H. J., Kim, H. S. & Chang, M. S. Potentiated therapeutic angiogenesis by primed human mesenchymal stem cells in a mouse model of hindlimb ischemia. Regen Med.8(3), 283–293 (2013).
Watt, S. M. et al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br. Med. Bull.108(1), 25–53 (2013).
Limone, A., Maggisano, V., Sarnataro, D. & Bulotta, S. Emerging roles of the cellular prion protein (PrPC) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell. Mol. Life Sci.80(8), 207 (2023).
Han, Y. S. et al. Hypoxia-induced expression of cellular prion protein improves the therapeutic potential of mesenchymal stem cells. Cell. Death Dis.7(10), e2395 (2016).
Lord-Dufour, S. et al. Evidence for transcriptional regulation of the glucose-6-phosphate transporter by HIF-1alpha: Targeting G6PT with mumbaistatin analogs in hypoxic mesenchymal stromal cells. Stem Cells. 27(3), 489–497 (2009).
Proulx-Bonneau, S., Guezguez, A. & Annabi, B. A concerted HIF-1α/MT1-MMP signalling axis regulates the expression of the 3BP2 adaptor protein in hypoxic mesenchymal stromal cells. PLoS One. 6(6), e21511 (2011).
Annabi, B. et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells. 21(3), 337–347 (2003).
Rattigan, Y., Hsu, J. M., Mishra, P. J., Glod, J. & Banerjee, D. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp. Cell. Res.316(20), 3417–3424 (2010).
Xuan, Y. T. et al. STAT3 activation prevents mesenchymal stem cell apoptosis and improves infarct repair. Circulation. 126(21S), A12591 (2012).
Van den Broeke, A., Van Poucke, M., Van Zeveren, A. & Peelman, L. J. Ribosomal protein SA and its pseudogenes in ruminants: an extremely conserved gene family. Czech J. Anim. Sci. Czech Acad. Agricultural Sci.58(2), 79–90 (2013).
Dinarello, A. et al. STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia. Cell. Death Discov. 9(1), 226 (2023).
Wang, M. et al. STAT3 mediates bone marrow mesenchymal stem cell VEGF production. J. Mol. Cell. Cardiol.42(6), 1009–1015 (2007).
Zhao, D. et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 34(24), 3107–3119 (2015).
Fantozzi, A. et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res.74(5), 1566–1575 (2014).
Zgheib, A., Pelletier-Bonnier, É., Levros, L. C. Jr, Annabi, B. & Selective JAK/STAT3 signalling regulates transcription of colony stimulating factor-2 and – 3 in Concanavalin-A-activated mesenchymal stromal cells. Cytokine. 63(2), 187–193 (2013).
Zgheib, A., Lamy, S. & Annabi, B. Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J. Biol. Chem.288(19), 13378–13386 (2013).
Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest.119(6), 1420–1428 (2009). Erratum in: J Clin Invest. 2010;120(5):1786.
Zhang, Q. et al. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (review). Mol. Med. Rep.24(3), 648 (2021).
Ayala-Cuellar, A. P., Kang, J. H., Jeung, E. B. & Choi, K. C. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol. Ther. (Seoul). 27(1), 25–33 (2019).
de Araújo Farias, V., Carrillo-Gálvez, A. B., Martín, F. & Anderson, P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor. Rev.43, 25–37 (2018).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012).
Gonzalez Suarez, N. et al. EGCG inhibits the inflammation and senescence inducing properties of MDA-MB-231 triple-negative breast cancer (TNBC) cells-derived extracellular vesicles in human adipose-derived mesenchymal stem cells. Cancer Cell. Int.23(1), 240 (2023).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34(17), i884–i890 (2018).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29(1), 15–21 (2013).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15(12), 550 (2014).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 32(18), 2847–2849 (2016).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U S A. 102(43), 15545–15550 (2005).
Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. ;49(D1):D605-D612. Erratum in: Nucleic Acids Res. 2021;49(18):10800. (2021).
Roy, M. E., Veilleux, C., Paquin, A., Gagnon, A. & Annabi, B. Transcriptional regulation of CYR61 and CTGF by LM98: a synthetic YAP-TEAD inhibitor that targets in-vitro vasculogenic mimicry in glioblastoma cells. Anticancer Drugs. 35(8), 709–719 (2024).
Pratt, J., Haidara, K. & Annabi, B. MT1-MMP expression levels and catalytic functions dictate LDL receptor-related protein-1 ligand internalization capacity in U87 glioblastoma cells. Int. J. Mol. Sci.23(22), 14214 (2022).
Torabidastgerdooei, S., Roy, M. E. & Annabi, B. A molecular signature for the G6PC3/SLC37A2/SLC37A4 interactors in glioblastoma disease progression and in the acquisition of a brain cancer stem cell phenotype. Front. Endocrinol. (Lausanne). 14, 1265698 (2023).
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res.28, 27–30 (2000).
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci.28, 1947–1951 (2019).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res.51, D587–D592 (2023).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-72862-6