In vitro biomaterial priming of human mesenchymal stromal/stem cells : implication of the Src/JAK/STAT3 pathway in vasculogenic mimicry – Scientific Reports

  • Ulpiano, C., da Silva, C. L. & Monteiro, G. A. Mesenchymal stromal cells (MSCs): a promising tool for cell-based angiogenic therapy. Curr. Gene Ther.21(5), 382–405 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thalakiriyawa, D. S., Jayasooriya, P. R. & Dissanayaka, W. L. Regenerative potential of mesenchymal stem cell-derived extracellular vesicles. Curr. Mol. Med.22(2), 98–119 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zriek, F., Di Battista, J. A. & Alaaeddine, N. Mesenchymal stromal cell secretome: Immunomodulation, tissue repair and effects on neurodegenerative conditions. Curr. Stem Cell. Res. Ther.16(6), 656–669 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Maacha, S. et al. Paracrine mechanisms of mesenchymal stromal cells in angiogenesis. Stem Cells Int.2020, 4356359 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bronckaers, A. et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol. Ther.143(2), 181–196 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miceli, V. et al. Therapeutic properties of mesenchymal stromal/stem sells: the need of cell priming for cell-free therapies in regenerative medicine. Int. J. Mol. Sci.22(2), 763 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. et al. The role of hypoxic mesenchymal stem cells in tumor immunity. Int. Immunopharmacol.112, 109172 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, Von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem.54(4), 385–395 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crisan, M. Transition of mesenchymal stem/stromal cells to endothelial cells. Stem Cell. Res. Ther.4(4), 95 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghajar, C. M. et al. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp. Cell. Res.316(5), 813–825 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annabi, B., Naud, E., Lee, Y. T., Eliopoulos, N. & Galipeau, J. Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J. Cell. Biochem.91(6), 1146–1158 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. C. et al. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol. Lett.11(2), 1089–1094 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, C. et al. Mesenchymal stem cells promote glioma neovascularization in vivo by fusing with cancer stem cells. BMC Cancer. 19(1), 1240 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget. 6(40), 42825–42837 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folberg, R. & Maniotis, A. J. Vasculogenic mimicry. APMIS. 112(7–8), 508–525 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Hendrix, M. J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl. Acad. Sci. U S A. 98(14), 8018–8023 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess, A. R., Seftor, E. A., Seftor, R. E. & Hendrix, M. J. Phosphoinositide 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res.63(16), 4757–4762 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol.155(3), 739–752 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paulis, Y. W., Soetekouw, P. M., Verheul, H. M., Tjan-Heijnen, V. C. & Griffioen, A. W. Signalling pathways in vasculogenic mimicry. Biochim. Biophys. Acta. 1806(1), 18–28 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, N. et al. Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Med. Oncol.29(5), 3599–3607 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rytlewski, J. A., Alejandra Aldon, M., Lewis, E. W. & Suggs, L. J. Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs. Microvasc Res.99, 26–35 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell. 112(1), 19–28 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagle, R. B. & Cress, A. E. Metastasis update: human prostate carcinoma invasion via tubulogenesis. Prostate Cancer. 2011, 249290 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Recouvreux, M. S. et al. FOXC2 promotes vasculogenic mimicry in ovarian cancer. Cancers (Basel). 14(19), 4851 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, C. et al. Phosphorylation of STAT3 promotes vasculogenic mimicry by inducing epithelial-to-mesenchymal transition in colorectal cancer. Technol. Cancer Res. Treat.16(6), 1209–1219 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Hernández, O. N. et al. Regulation networks driving vasculogenic mimicry in solid tumors. Front. Oncol.9, 1419 (2020).

    Article 

    Google Scholar
     

  • Zhou, H., Yuan, Y. & Qian, H. Expression of STAT3 and vasculogenic mimicry in gallbladder carcinoma promotes invasion and metastasis. Exp. Ther. Med.22(1), 738 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gresseau, L., Roy, M. E., Duhamel, S. & Annabi, B. A signaling crosstalk links SNAIL to the 37/67 kDa Laminin-1 Receptor Ribosomal Protein SA and regulates the acquisition of a cancer stem cell molecular signature in U87 glioblastoma neurospheres. Cancers (Basel). 14(23), 5944 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pesapane, A. et al. Discovery of new small molecules inhibiting 67 kDa laminin receptor interaction with laminin and cancer cell invasion. Oncotarget. 6(20), 18116–18133 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell. Res. Ther.13(1), 146 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolas, J. et al. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 21(6), 1968–1994 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Au, P., Tam, J., Fukumura, D. & Jain, R. K. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 111(9), 4551–4558 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kachgal, S. & Putnam, A. J. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 14(1), 47–59 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, B. et al. A novel function for the haemopoietic supportive murine bone marrow MS-5 mesenchymal stromal cell line in promoting human vasculogenesis and angiogenesis. Br. J. Haematol.157(3), 299–311 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merimi, M. et al. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: current knowledge and future understandings. Front. Cell. Dev. Biol.9, 661532 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, C. E., Iruela-Arispe, M. L. & Zhao, Y. Y. Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. Am. J. Pathol.191(1), 52–65 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E. J., Park, H. W., Jeon, H. J., Kim, H. S. & Chang, M. S. Potentiated therapeutic angiogenesis by primed human mesenchymal stem cells in a mouse model of hindlimb ischemia. Regen Med.8(3), 283–293 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watt, S. M. et al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br. Med. Bull.108(1), 25–53 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limone, A., Maggisano, V., Sarnataro, D. & Bulotta, S. Emerging roles of the cellular prion protein (PrPC) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell. Mol. Life Sci.80(8), 207 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, Y. S. et al. Hypoxia-induced expression of cellular prion protein improves the therapeutic potential of mesenchymal stem cells. Cell. Death Dis.7(10), e2395 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lord-Dufour, S. et al. Evidence for transcriptional regulation of the glucose-6-phosphate transporter by HIF-1alpha: Targeting G6PT with mumbaistatin analogs in hypoxic mesenchymal stromal cells. Stem Cells. 27(3), 489–497 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Proulx-Bonneau, S., Guezguez, A. & Annabi, B. A concerted HIF-1α/MT1-MMP signalling axis regulates the expression of the 3BP2 adaptor protein in hypoxic mesenchymal stromal cells. PLoS One. 6(6), e21511 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annabi, B. et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells. 21(3), 337–347 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rattigan, Y., Hsu, J. M., Mishra, P. J., Glod, J. & Banerjee, D. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp. Cell. Res.316(20), 3417–3424 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xuan, Y. T. et al. STAT3 activation prevents mesenchymal stem cell apoptosis and improves infarct repair. Circulation. 126(21S), A12591 (2012).


    Google Scholar
     

  • Van den Broeke, A., Van Poucke, M., Van Zeveren, A. & Peelman, L. J. Ribosomal protein SA and its pseudogenes in ruminants: an extremely conserved gene family. Czech J. Anim. Sci. Czech Acad. Agricultural Sci.58(2), 79–90 (2013).

    Article 

    Google Scholar
     

  • Dinarello, A. et al. STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia. Cell. Death Discov. 9(1), 226 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. STAT3 mediates bone marrow mesenchymal stem cell VEGF production. J. Mol. Cell. Cardiol.42(6), 1009–1015 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, D. et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 34(24), 3107–3119 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fantozzi, A. et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res.74(5), 1566–1575 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zgheib, A., Pelletier-Bonnier, É., Levros, L. C. Jr, Annabi, B. & Selective JAK/STAT3 signalling regulates transcription of colony stimulating factor-2 and – 3 in Concanavalin-A-activated mesenchymal stromal cells. Cytokine. 63(2), 187–193 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zgheib, A., Lamy, S. & Annabi, B. Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J. Biol. Chem.288(19), 13378–13386 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest.119(6), 1420–1428 (2009). Erratum in: J Clin Invest. 2010;120(5):1786.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (review). Mol. Med. Rep.24(3), 648 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayala-Cuellar, A. P., Kang, J. H., Jeung, E. B. & Choi, K. C. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol. Ther. (Seoul). 27(1), 25–33 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Araújo Farias, V., Carrillo-Gálvez, A. B., Martín, F. & Anderson, P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor. Rev.43, 25–37 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez Suarez, N. et al. EGCG inhibits the inflammation and senescence inducing properties of MDA-MB-231 triple-negative breast cancer (TNBC) cells-derived extracellular vesicles in human adipose-derived mesenchymal stem cells. Cancer Cell. Int.23(1), 240 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34(17), i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29(1), 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15(12), 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 32(18), 2847–2849 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U S A. 102(43), 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. ;49(D1):D605-D612. Erratum in: Nucleic Acids Res. 2021;49(18):10800. (2021).

  • Roy, M. E., Veilleux, C., Paquin, A., Gagnon, A. & Annabi, B. Transcriptional regulation of CYR61 and CTGF by LM98: a synthetic YAP-TEAD inhibitor that targets in-vitro vasculogenic mimicry in glioblastoma cells. Anticancer Drugs. 35(8), 709–719 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pratt, J., Haidara, K. & Annabi, B. MT1-MMP expression levels and catalytic functions dictate LDL receptor-related protein-1 ligand internalization capacity in U87 glioblastoma cells. Int. J. Mol. Sci.23(22), 14214 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torabidastgerdooei, S., Roy, M. E. & Annabi, B. A molecular signature for the G6PC3/SLC37A2/SLC37A4 interactors in glioblastoma disease progression and in the acquisition of a brain cancer stem cell phenotype. Front. Endocrinol. (Lausanne). 14, 1265698 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res.28, 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci.28, 1947–1951 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res.51, D587–D592 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar