In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition – Scientific Reports

  • Karakikes, I., Termglinchan, V. & Wu, J. C. Human-induced pluripotent stem cell models of inherited cardiomyopathies. Curr. Opin. Cardiol. 29, 214–219. https://doi.org/10.1097/hco.0000000000000049 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pourrier, M. & Fedida, D. The emergence of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a platform to model arrhythmogenic diseases. Int. J. Mol. Sci. 21, 657. https://doi.org/10.3390/ijms21020657 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, J. et al. Human electrophysiological and pharmacological properties of XEN-D0101: A novel atrial-selective Kv1.5/IKur inhibitor. J. Cardiovasc. Pharmacol. 61, 408–415. https://doi.org/10.1097/FJC.0b013e31828780eb (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, G.-R. et al. A modified method for isolation of human cardiomyocytes to model cardiac diseases. J. Transl. Med. 16, 288. https://doi.org/10.1186/s12967-018-1649-6 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coppini, R. et al. Isolation and functional characterization of human ventricular cardiomyocytes from fresh surgical samples. J. Vis. Exp. https://doi.org/10.3791/51116 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skibsbye, L. et al. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc. Res. 103, 156–167. https://doi.org/10.1093/cvr/cvu121 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 21, 579–587. https://doi.org/10.1038/cr.2010.163 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179-194.e174. https://doi.org/10.1016/j.stem.2017.07.003 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemme, M. et al. Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Rep. 11, 1378–1390. https://doi.org/10.1016/j.stemcr.2018.10.008 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Devalla, H. D. et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol. Med. 7, 394–410. https://doi.org/10.15252/emmm.201404757 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Rocha, A. M. et al. hiPSC-CM monolayer maturation state determines drug responsiveness in high throughput pro-arrhythmia screen. Sci. Rep. 7, 13834. https://doi.org/10.1038/s41598-017-13590-y (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burridge, P. W. et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med. 22, 547–556. https://doi.org/10.1038/nm.4087 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409. https://doi.org/10.1056/NEJMoa0908679 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229. https://doi.org/10.1038/nature09747 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponce-Balbuena, D. et al. Cardiac Kir2.1 and NaV1.5 channels traffic together to the sarcolemma to control excitability. Circ. Res. 122, 1501–1516. https://doi.org/10.1161/circresaha.117.311872 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925. https://doi.org/10.1016/j.celrep.2020.107925 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denning, C. et al. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochimica et Biophysica Acta 1863, 1728–1748. https://doi.org/10.1016/j.bbamcr.2015.10.014 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243. https://doi.org/10.1038/s41586-018-0016-3 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ismaili, D. et al. Regulation of APD and force by the Na+/Ca2+ exchanger in human-induced pluripotent stem cell-derived engineered heart tissue. Cells 11, 2424. https://doi.org/10.3390/cells11152424 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doss, M. X. et al. Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on IKr. PLOS ONE 7, e40288. https://doi.org/10.1371/journal.pone.0040288 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemoine, M. D. et al. Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci. Rep. 7, 5464. https://doi.org/10.1038/s41598-017-05600-w (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell Cardiol. 161, 130–138. https://doi.org/10.1016/j.yjmcc.2021.08.005 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006-2017. https://doi.org/10.1152/ajpheart.00694.2011 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uzun, A. U. et al. Ca2+-Currents in human induced pluripotent stem cell-derived cardiomyocytes effects of two different culture conditions. Front. Pharmacol. 7, 300. https://doi.org/10.3389/fphar.2016.00300 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilderink, S., Devalla, H. D., Bosch, L., Wilders, R. & Verkerk, A. O. Ultrarapid delayed rectifier K+ channelopathies in human induced pluripotent stem cell-derived cardiomyocytes. Front. Cell Develop. Biol. https://doi.org/10.3389/fcell.2020.00536 (2020).

    Article 

    Google Scholar
     

  • Spitzer, K. W. et al. Cell-to-cell electrical interactions during early and late repolarization. J. Cardiovasc. Electrophysiol. 17(Suppl 1), S8-s14. https://doi.org/10.1111/j.1540-8167.2006.00379.x (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Van de Sande, D. V. et al. The resting membrane potential of hSC-CM in a syncytium is more hyperpolarised than that of isolated cells. Channels 15, 239–252. https://doi.org/10.1080/19336950.2021.1871815 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitcheson, J. S., Hancox, J. C. & Levi, A. J. Action potentials, ion channel currents and transverse tubule density in adult rabbit ventricular myocytes maintained for 6 days in cell culture. Pflügers Archiv. 431, 814–827. https://doi.org/10.1007/s004240050073 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J., Li, G. R., Fermini, B. & Nattel, S. Properties of sodium and potassium currents of cultured adult human atrial myocytes. Am. J. Physiol. 270, H1676-1686. https://doi.org/10.1152/ajpheart.1996.270.5.H1676 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 5, e12559. https://doi.org/10.1371/journal.pone.0012559 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huethorst, E. et al. Conventional rigid 2D substrates cause complex contractile signals in monolayers of human induced pluripotent stem cell-derived cardiomyocytes. J. Physiol. 600, 483–507. https://doi.org/10.1113/jp282228 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, J. et al. In vitro model of ischemic heart failure using human induced pluripotent stem cell–derived cardiomyocytes. JCI Insight. https://doi.org/10.1172/jci.insight.134368 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Treat, J. A., Goodrow, R. J., Bot, C. T., Haedo, R. J. & Cordeiro, J. M. Pharmacological enhancement of repolarization reserve in human induced pluripotent stem cells derived cardiomyocytes. Biochem. Pharmacol. 169, 113608. https://doi.org/10.1016/j.bcp.2019.08.010 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldfracht, I. et al. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomaterialia 92, 145–159. https://doi.org/10.1016/j.actbio.2019.05.016 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemoine, M. D. et al. Human induced pluripotent stem cell-derived engineered heart tissue as a sensitive test system for QT prolongation and arrhythmic triggers. Circ. Arrhythmia Electrophysiol. 11, e006035. https://doi.org/10.1161/CIRCEP.117.006035 (2018).

    Article 

    Google Scholar
     

  • Breckwoldt, K. et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protocols 12, 1177–1197. https://doi.org/10.1038/nprot.2017.033 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hancock, J. M. et al. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes. Heart Rhythm 12, 1003–1015. https://doi.org/10.1016/j.hrthm.2015.01.027 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Diness, J. G. et al. The KCa2 channel inhibitor AP30663 selectively increases atrial refractoriness, converts vernakalant-resistant atrial fibrillation and prevents its reinduction in conscious pigs. Front. Pharmacol. 11, 159. https://doi.org/10.3389/fphar.2020.00159 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278, 49085–49094. https://doi.org/10.1074/jbc.M307508200 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hancox, J. C., James, A. F., Marrion, N. V., Zhang, H. & Thomas, D. Novel ion channel targets in atrial fibrillation. Expert Opin. Ther. Targets 20, 947–958. https://doi.org/10.1517/14728222.2016.1159300 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuteja, D. et al. Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ. Res. 107, 851–859. https://doi.org/10.1161/circresaha.109.215269 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitcheson, J. S., Hancox, J. C. & Levi, A. J. Cultured adult cardiac myocytes: Future applications, culture methods, morphological and electrophysiological properties. Cardiovasc. Res. 39, 280–300. https://doi.org/10.1016/s0008-6363(98)00128-x (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bénardeau, A. et al. Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium. J. Mol. Cell Cardiol. 29, 1307–1320. https://doi.org/10.1006/jmcc.1996.0366 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991–2002. https://doi.org/10.1089/scd.2012.0490 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamakura, T. et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307–1314. https://doi.org/10.1253/circj.cj-12-0987 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewandowski, J. et al. The impact of in vitro cell culture duration on the maturation of human cardiomyocytes derived from induced pluripotent stem cells of myogenic origin. Cell Transpl. 27, 1047–1067. https://doi.org/10.1177/0963689718779346 (2018).

    Article 

    Google Scholar
     

  • Ravens, U., Poulet, C., Wettwer, E. & Knaut, M. Atrial selectivity of antiarrhythmic drugs. J. Physiol. 591, 4087–4097. https://doi.org/10.1113/jphysiol.2013.256115 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wettwer, E., Christ, T., Dobrev, D. & Ravens, U. Novel anti-arrhythmic agents for the treatment of atrial fibrillation. Curr. Opin. Pharmacol. 7, 214–218. https://doi.org/10.1016/j.coph.2006.10.007 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonsson, M. K. B. et al. Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J. Mol. Cell. Cardiol. 52, 998–1008. https://doi.org/10.1016/j.yjmcc.2012.02.002 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horváth, A. et al. Low resting membrane potential and low inward rectifier potassium currents are not inherent features of hiPSC-derived cardiomyocytes. Stem Cell Rep. 10, 822–833. https://doi.org/10.1016/j.stemcr.2018.01.012 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ismaili, D. et al. Human induced pluripotent stem cell-derived cardiomyocytes as an electrophysiological model: Opportunities and challenges-The Hamburg perspective. Front. Physiol. 14, 1132165. https://doi.org/10.3389/fphys.2023.1132165 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lachaud, Q. et al. Electrophysiological heterogeneity in large populations of rabbit ventricular cardiomyocytes. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab375 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitcheson, J. S., Hancox, J. C. & Levi, A. J. Cultured adult rabbit myocytes: Effect of adding supplements to the medium, and response to isoprenaline. J. Cardiovasc. Electrophysiol. 8, 1020–1030. https://doi.org/10.1111/j.1540-8167.1997.tb00626.x (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banyasz, T. et al. Transformation of adult rat cardiac myocytes in primary culture. Exp. Physiol. 93, 370–382. https://doi.org/10.1113/expphysiol.2007.040659 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kato, S., Ivester, C. T., Cooper, G. T., Zile, M. R. & McDermott, P. J. Growth effects of electrically stimulated contraction on adult feline cardiocytes in primary culture. Am. J. Physiol. 268, H2495-2504. https://doi.org/10.1152/ajpheart.1995.268.6.H2495 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berger, H. J. et al. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture. Am. J. Physiol. 266, H341-349. https://doi.org/10.1152/ajpheart.1994.266.1.H341 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivester, C. T. et al. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am. J. Physiol. 265, H666-674. https://doi.org/10.1152/ajpheart.1993.265.2.H666 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, X. Y. et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ. Res. 103, 845–854. https://doi.org/10.1161/CIRCRESAHA.108.175463 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hershman, K. M. & Levitan, E. S. Cell-cell contact between adult rat cardiac myocytes regulates Kv1.5 and Kv4.2 K+ channel mRNA expression. Am. J. Physiol. 275, 1473–1480. https://doi.org/10.1152/ajpcell.1998.275.6.C1473 (1998).

    Article 

    Google Scholar
     

  • Osten, F. et al. Myosin expression and contractile function are altered by replating stem cell-derived cardiomyocytes. J. Gen. Physiol. https://doi.org/10.1085/jgp.202313377 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, L. et al. Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ. Res. 100, 112–120. https://doi.org/10.1161/01.res.0000253095.44186.72 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. D. et al. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes. Sci. Rep. 8, 4670. https://doi.org/10.1038/s41598-018-22843-3 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaniboni, M., Pollard, A. E., Yang, L. & Spitzer, K. W. Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. Am. J. Physiol.-Heart Circ. Physiol. 278, H677–H687. https://doi.org/10.1152/ajpheart.2000.278.3.H677 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herron, T. J. et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circulation Arrhythmia Electrophysiol. 9, e003638. https://doi.org/10.1161/CIRCEP.113.003638 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nijak, A. et al. Morpho-functional comparison of differentiation protocols to create iPSC-derived cardiomyocytes. Biol. Open. https://doi.org/10.1242/bio.059016 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, A.O.-T. et al. Correlation between frataxin expression and contractility revealed by in vitro Friedreich’s ataxia cardiac tissue models engineered from human pluripotent stem cells. Stem Cell Res. Therapy 10, 203. https://doi.org/10.1186/s13287-019-1305-y (2019).

    Article 
    CAS 

    Google Scholar
     

  • Altrocchi, C. et al. Repolarization instability and arrhythmia by IKr block in single human-induced pluripotent stem cell-derived cardiomyocytes and 2D monolayers. EP Europace 22, 1431–1441. https://doi.org/10.1093/europace/euaa111 (2020).

    Article 

    Google Scholar
     

  • Block, T. et al. Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Sci. Rep. 10, 19071. https://doi.org/10.1038/s41598-020-76052-y (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry, M. D. et al. Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovasc. Res. 116, 1434–1445. https://doi.org/10.1093/cvr/cvz247 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nakanishi, H. et al. Geometrical patterning and constituent cell heterogeneity facilitate electrical conduction disturbances in a human induced pluripotent stem cell-based platform: An in vitro disease model of atrial arrhythmias. Front. Physiol. 10, 818. https://doi.org/10.3389/fphys.2019.00818 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunawan, M. G. et al. Drug screening platform using human induced pluripotent stem cell-derived atrial cardiomyocytes and optical mapping. Stem Cells Transl. Med. 10, 68–82. https://doi.org/10.1002/sctm.19-0440 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abilez, O. J. et al. Multiscale computational models for optogenetic control of cardiac function. Biophys. J. 101, 1326–1334. https://doi.org/10.1016/j.bpj.2011.08.004 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quach, B., Krogh-Madsen, T., Entcheva, E. & Christini, D. J. Light-activated dynamic clamp using iPSC-derived cardiomyocytes. Biophys. J. 115, 2206–2217. https://doi.org/10.1016/j.bpj.2018.10.018 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, D., Stohlman, J., Dang, Q., Strauss, D. G. & Blinova, K. Assessment of proarrhythmic potential of drugs in optogenetically paced induced pluripotent stem cell-derived cardiomyocytes. Toxicol. Sci. 170, 167–179. https://doi.org/10.1093/toxsci/kfz076 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, D. et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1α and LDHA. Circ. Res. 123, 1066–1079. https://doi.org/10.1161/circresaha.118.313249 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hortigon-Vinagre, M. P. et al. The use of ratiometric fluorescence measurements of the voltage sensitive dye Di-4-ANEPPS to examine action potential characteristics and drug effects on human induced pluripotent stem cell-derived cardiomyocytes. Toxicol. Sci. 154, 320–331. https://doi.org/10.1093/toxsci/kfw171 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, G. et al. Incomplete assembly of the dystrophin-associated protein complex in 2D and 3D-cultured human induced pluripotent stem cell-derived cardiomyocytes. Front. Cell Dev. Biol. 9, 737840. https://doi.org/10.3389/fcell.2021.737840 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia, C. et al. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol. Bioeng. 115, 630–644. https://doi.org/10.1002/bit.26504 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parikh, S. S. et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323–1330. https://doi.org/10.1161/circresaha.117.311920 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 13, 657–668. https://doi.org/10.1016/j.stemcr.2019.08.013 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Beauchamp, P. et al. 3D co-culture of hiPSC-derived cardiomyocytes with cardiac fibroblasts improves tissue-like features of cardiac spheroids. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2020.00014 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane, C. & Terracciano, C. M. Human cardiac fibroblasts engage the sarcoplasmic reticulum in induced pluripotent stem cell-derived cardiomyocyte excitation-contraction coupling. J. Am. Coll. Cardiol. 72, 1061–1063. https://doi.org/10.1016/j.jacc.2018.06.028 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dunn, K. K. et al. Coculture of endothelial cells with human pluripotent stem cell-derived cardiac progenitors reveals a differentiation stage-specific enhancement of cardiomyocyte maturation. Biotechnol. J. 14, e1800725. https://doi.org/10.1002/biot.201800725 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowalski, W. J. et al. Sympathetic neurons regulate cardiomyocyte maturation in culture. Front. Cell Develop. Biol. https://doi.org/10.3389/fcell.2022.850645 (2022).

    Article 

    Google Scholar
     

  • Zhao, Z. et al. Ion channel expression and characterization in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Int. 2018, 6067096. https://doi.org/10.1155/2018/6067096 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benzoni, P. et al. Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc. Res. 116, 1147–1160. https://doi.org/10.1093/cvr/cvz217 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860. https://doi.org/10.1038/nmeth.2999 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verkerk, A. O. et al. Patch-clamp recordings of action potentials from human atrial myocytes: optimization through dynamic clamp. Front. Pharmacol. 12, 649414. https://doi.org/10.3389/fphar.2021.649414 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wettwer, E. et al. Role of IKur in controlling action potential shape and contractility in the human atrium. Circulation 110, 2299–2306. https://doi.org/10.1161/01.CIR.0000145155.60288.71 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Schulz, C. et al. A critical role of retinoic acid concentration for the induction of a fully human-like atrial action potential phenotype in hiPSC-CM. Stem Cell Rep. 18, 2096–2107. https://doi.org/10.1016/j.stemcr.2023.10.006 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mosqueira, D. et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 39, 3879–3892. https://doi.org/10.1093/eurheartj/ehy249 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137. https://doi.org/10.1016/j.stem.2012.09.013 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bers, D. M., Patton, C. W. & Nuccitelli, R. in Methods in Cell Biology Vol. 99 (Ed. M. Whitaker) 1–26 (Academic Press, 2010).

  • Butler, A. S., Hancox, J. C. & Marrion, N. V. Preferential formation of human heteromeric SK2:SK3 channels limits homomeric SK channel assembly and function. J. Biol. Chem. 299, 102783. https://doi.org/10.1016/j.jbc.2022.102783 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys. J. 74, 230–241. https://doi.org/10.1016/S0006-3495(98)77782-3 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Galindo, E. G. et al. Relaxation gating of the acetylcholine-activated inward rectifier K+ current is mediated by intrinsic voltage sensitivity of the muscarinic receptor. J. Physiol. 589, 1755–1767. https://doi.org/10.1113/jphysiol.2010.204115 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar