Karakikes, I., Termglinchan, V. & Wu, J. C. Human-induced pluripotent stem cell models of inherited cardiomyopathies. Curr. Opin. Cardiol. 29, 214–219. https://doi.org/10.1097/hco.0000000000000049 (2014).
Pourrier, M. & Fedida, D. The emergence of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a platform to model arrhythmogenic diseases. Int. J. Mol. Sci. 21, 657. https://doi.org/10.3390/ijms21020657 (2020).
Ford, J. et al. Human electrophysiological and pharmacological properties of XEN-D0101: A novel atrial-selective Kv1.5/IKur inhibitor. J. Cardiovasc. Pharmacol. 61, 408–415. https://doi.org/10.1097/FJC.0b013e31828780eb (2013).
Guo, G.-R. et al. A modified method for isolation of human cardiomyocytes to model cardiac diseases. J. Transl. Med. 16, 288. https://doi.org/10.1186/s12967-018-1649-6 (2018).
Coppini, R. et al. Isolation and functional characterization of human ventricular cardiomyocytes from fresh surgical samples. J. Vis. Exp. https://doi.org/10.3791/51116 (2014).
Skibsbye, L. et al. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc. Res. 103, 156–167. https://doi.org/10.1093/cvr/cvu121 (2014).
Zhang, Q. et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 21, 579–587. https://doi.org/10.1038/cr.2010.163 (2011).
Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179-194.e174. https://doi.org/10.1016/j.stem.2017.07.003 (2017).
Lemme, M. et al. Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Rep. 11, 1378–1390. https://doi.org/10.1016/j.stemcr.2018.10.008 (2018).
Devalla, H. D. et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol. Med. 7, 394–410. https://doi.org/10.15252/emmm.201404757 (2015).
da Rocha, A. M. et al. hiPSC-CM monolayer maturation state determines drug responsiveness in high throughput pro-arrhythmia screen. Sci. Rep. 7, 13834. https://doi.org/10.1038/s41598-017-13590-y (2017).
Burridge, P. W. et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med. 22, 547–556. https://doi.org/10.1038/nm.4087 (2016).
Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409. https://doi.org/10.1056/NEJMoa0908679 (2010).
Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229. https://doi.org/10.1038/nature09747 (2011).
Ponce-Balbuena, D. et al. Cardiac Kir2.1 and NaV1.5 channels traffic together to the sarcolemma to control excitability. Circ. Res. 122, 1501–1516. https://doi.org/10.1161/circresaha.117.311872 (2018).
Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925. https://doi.org/10.1016/j.celrep.2020.107925 (2020).
Denning, C. et al. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochimica et Biophysica Acta 1863, 1728–1748. https://doi.org/10.1016/j.bbamcr.2015.10.014 (2016).
Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243. https://doi.org/10.1038/s41586-018-0016-3 (2018).
Ismaili, D. et al. Regulation of APD and force by the Na+/Ca2+ exchanger in human-induced pluripotent stem cell-derived engineered heart tissue. Cells 11, 2424. https://doi.org/10.3390/cells11152424 (2022).
Doss, M. X. et al. Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on IKr. PLOS ONE 7, e40288. https://doi.org/10.1371/journal.pone.0040288 (2012).
Lemoine, M. D. et al. Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci. Rep. 7, 5464. https://doi.org/10.1038/s41598-017-05600-w (2017).
Wang, L. et al. Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell Cardiol. 161, 130–138. https://doi.org/10.1016/j.yjmcc.2021.08.005 (2021).
Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006-2017. https://doi.org/10.1152/ajpheart.00694.2011 (2011).
Uzun, A. U. et al. Ca2+-Currents in human induced pluripotent stem cell-derived cardiomyocytes effects of two different culture conditions. Front. Pharmacol. 7, 300. https://doi.org/10.3389/fphar.2016.00300 (2016).
Hilderink, S., Devalla, H. D., Bosch, L., Wilders, R. & Verkerk, A. O. Ultrarapid delayed rectifier K+ channelopathies in human induced pluripotent stem cell-derived cardiomyocytes. Front. Cell Develop. Biol. https://doi.org/10.3389/fcell.2020.00536 (2020).
Spitzer, K. W. et al. Cell-to-cell electrical interactions during early and late repolarization. J. Cardiovasc. Electrophysiol. 17(Suppl 1), S8-s14. https://doi.org/10.1111/j.1540-8167.2006.00379.x (2006).
Van de Sande, D. V. et al. The resting membrane potential of hSC-CM in a syncytium is more hyperpolarised than that of isolated cells. Channels 15, 239–252. https://doi.org/10.1080/19336950.2021.1871815 (2021).
Mitcheson, J. S., Hancox, J. C. & Levi, A. J. Action potentials, ion channel currents and transverse tubule density in adult rabbit ventricular myocytes maintained for 6 days in cell culture. Pflügers Archiv. 431, 814–827. https://doi.org/10.1007/s004240050073 (1996).
Feng, J., Li, G. R., Fermini, B. & Nattel, S. Properties of sodium and potassium currents of cultured adult human atrial myocytes. Am. J. Physiol. 270, H1676-1686. https://doi.org/10.1152/ajpheart.1996.270.5.H1676 (1996).
Zhang, Y. et al. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 5, e12559. https://doi.org/10.1371/journal.pone.0012559 (2010).
Huethorst, E. et al. Conventional rigid 2D substrates cause complex contractile signals in monolayers of human induced pluripotent stem cell-derived cardiomyocytes. J. Physiol. 600, 483–507. https://doi.org/10.1113/jp282228 (2022).
Davis, J. et al. In vitro model of ischemic heart failure using human induced pluripotent stem cell–derived cardiomyocytes. JCI Insight. https://doi.org/10.1172/jci.insight.134368 (2021).
Treat, J. A., Goodrow, R. J., Bot, C. T., Haedo, R. J. & Cordeiro, J. M. Pharmacological enhancement of repolarization reserve in human induced pluripotent stem cells derived cardiomyocytes. Biochem. Pharmacol. 169, 113608. https://doi.org/10.1016/j.bcp.2019.08.010 (2019).
Goldfracht, I. et al. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomaterialia 92, 145–159. https://doi.org/10.1016/j.actbio.2019.05.016 (2019).
Lemoine, M. D. et al. Human induced pluripotent stem cell-derived engineered heart tissue as a sensitive test system for QT prolongation and arrhythmic triggers. Circ. Arrhythmia Electrophysiol. 11, e006035. https://doi.org/10.1161/CIRCEP.117.006035 (2018).
Breckwoldt, K. et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protocols 12, 1177–1197. https://doi.org/10.1038/nprot.2017.033 (2017).
Hancock, J. M. et al. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes. Heart Rhythm 12, 1003–1015. https://doi.org/10.1016/j.hrthm.2015.01.027 (2015).
Diness, J. G. et al. The KCa2 channel inhibitor AP30663 selectively increases atrial refractoriness, converts vernakalant-resistant atrial fibrillation and prevents its reinduction in conscious pigs. Front. Pharmacol. 11, 159. https://doi.org/10.3389/fphar.2020.00159 (2020).
Xu, Y. et al. Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278, 49085–49094. https://doi.org/10.1074/jbc.M307508200 (2003).
Hancox, J. C., James, A. F., Marrion, N. V., Zhang, H. & Thomas, D. Novel ion channel targets in atrial fibrillation. Expert Opin. Ther. Targets 20, 947–958. https://doi.org/10.1517/14728222.2016.1159300 (2016).
Tuteja, D. et al. Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ. Res. 107, 851–859. https://doi.org/10.1161/circresaha.109.215269 (2010).
Mitcheson, J. S., Hancox, J. C. & Levi, A. J. Cultured adult cardiac myocytes: Future applications, culture methods, morphological and electrophysiological properties. Cardiovasc. Res. 39, 280–300. https://doi.org/10.1016/s0008-6363(98)00128-x (1998).
Bénardeau, A. et al. Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium. J. Mol. Cell Cardiol. 29, 1307–1320. https://doi.org/10.1006/jmcc.1996.0366 (1997).
Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991–2002. https://doi.org/10.1089/scd.2012.0490 (2013).
Kamakura, T. et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307–1314. https://doi.org/10.1253/circj.cj-12-0987 (2013).
Lewandowski, J. et al. The impact of in vitro cell culture duration on the maturation of human cardiomyocytes derived from induced pluripotent stem cells of myogenic origin. Cell Transpl. 27, 1047–1067. https://doi.org/10.1177/0963689718779346 (2018).
Ravens, U., Poulet, C., Wettwer, E. & Knaut, M. Atrial selectivity of antiarrhythmic drugs. J. Physiol. 591, 4087–4097. https://doi.org/10.1113/jphysiol.2013.256115 (2013).
Wettwer, E., Christ, T., Dobrev, D. & Ravens, U. Novel anti-arrhythmic agents for the treatment of atrial fibrillation. Curr. Opin. Pharmacol. 7, 214–218. https://doi.org/10.1016/j.coph.2006.10.007 (2007).
Jonsson, M. K. B. et al. Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J. Mol. Cell. Cardiol. 52, 998–1008. https://doi.org/10.1016/j.yjmcc.2012.02.002 (2012).
Horváth, A. et al. Low resting membrane potential and low inward rectifier potassium currents are not inherent features of hiPSC-derived cardiomyocytes. Stem Cell Rep. 10, 822–833. https://doi.org/10.1016/j.stemcr.2018.01.012 (2018).
Ismaili, D. et al. Human induced pluripotent stem cell-derived cardiomyocytes as an electrophysiological model: Opportunities and challenges-The Hamburg perspective. Front. Physiol. 14, 1132165. https://doi.org/10.3389/fphys.2023.1132165 (2023).
Lachaud, Q. et al. Electrophysiological heterogeneity in large populations of rabbit ventricular cardiomyocytes. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab375 (2022).
Mitcheson, J. S., Hancox, J. C. & Levi, A. J. Cultured adult rabbit myocytes: Effect of adding supplements to the medium, and response to isoprenaline. J. Cardiovasc. Electrophysiol. 8, 1020–1030. https://doi.org/10.1111/j.1540-8167.1997.tb00626.x (1997).
Banyasz, T. et al. Transformation of adult rat cardiac myocytes in primary culture. Exp. Physiol. 93, 370–382. https://doi.org/10.1113/expphysiol.2007.040659 (2008).
Kato, S., Ivester, C. T., Cooper, G. T., Zile, M. R. & McDermott, P. J. Growth effects of electrically stimulated contraction on adult feline cardiocytes in primary culture. Am. J. Physiol. 268, H2495-2504. https://doi.org/10.1152/ajpheart.1995.268.6.H2495 (1995).
Berger, H. J. et al. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture. Am. J. Physiol. 266, H341-349. https://doi.org/10.1152/ajpheart.1994.266.1.H341 (1994).
Ivester, C. T. et al. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am. J. Physiol. 265, H666-674. https://doi.org/10.1152/ajpheart.1993.265.2.H666 (1993).
Qi, X. Y. et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ. Res. 103, 845–854. https://doi.org/10.1161/CIRCRESAHA.108.175463 (2008).
Hershman, K. M. & Levitan, E. S. Cell-cell contact between adult rat cardiac myocytes regulates Kv1.5 and Kv4.2 K+ channel mRNA expression. Am. J. Physiol. 275, 1473–1480. https://doi.org/10.1152/ajpcell.1998.275.6.C1473 (1998).
Osten, F. et al. Myosin expression and contractile function are altered by replating stem cell-derived cardiomyocytes. J. Gen. Physiol. https://doi.org/10.1085/jgp.202313377 (2023).
Lu, L. et al. Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ. Res. 100, 112–120. https://doi.org/10.1161/01.res.0000253095.44186.72 (2007).
Zhang, X. D. et al. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes. Sci. Rep. 8, 4670. https://doi.org/10.1038/s41598-018-22843-3 (2018).
Zaniboni, M., Pollard, A. E., Yang, L. & Spitzer, K. W. Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. Am. J. Physiol.-Heart Circ. Physiol. 278, H677–H687. https://doi.org/10.1152/ajpheart.2000.278.3.H677 (2000).
Herron, T. J. et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circulation Arrhythmia Electrophysiol. 9, e003638. https://doi.org/10.1161/CIRCEP.113.003638 (2016).
Nijak, A. et al. Morpho-functional comparison of differentiation protocols to create iPSC-derived cardiomyocytes. Biol. Open. https://doi.org/10.1242/bio.059016 (2022).
Wong, A.O.-T. et al. Correlation between frataxin expression and contractility revealed by in vitro Friedreich’s ataxia cardiac tissue models engineered from human pluripotent stem cells. Stem Cell Res. Therapy 10, 203. https://doi.org/10.1186/s13287-019-1305-y (2019).
Altrocchi, C. et al. Repolarization instability and arrhythmia by IKr block in single human-induced pluripotent stem cell-derived cardiomyocytes and 2D monolayers. EP Europace 22, 1431–1441. https://doi.org/10.1093/europace/euaa111 (2020).
Block, T. et al. Human perinatal stem cell derived extracellular matrix enables rapid maturation of hiPSC-CM structural and functional phenotypes. Sci. Rep. 10, 19071. https://doi.org/10.1038/s41598-020-76052-y (2020).
Perry, M. D. et al. Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovasc. Res. 116, 1434–1445. https://doi.org/10.1093/cvr/cvz247 (2019).
Nakanishi, H. et al. Geometrical patterning and constituent cell heterogeneity facilitate electrical conduction disturbances in a human induced pluripotent stem cell-based platform: An in vitro disease model of atrial arrhythmias. Front. Physiol. 10, 818. https://doi.org/10.3389/fphys.2019.00818 (2019).
Gunawan, M. G. et al. Drug screening platform using human induced pluripotent stem cell-derived atrial cardiomyocytes and optical mapping. Stem Cells Transl. Med. 10, 68–82. https://doi.org/10.1002/sctm.19-0440 (2021).
Abilez, O. J. et al. Multiscale computational models for optogenetic control of cardiac function. Biophys. J. 101, 1326–1334. https://doi.org/10.1016/j.bpj.2011.08.004 (2011).
Quach, B., Krogh-Madsen, T., Entcheva, E. & Christini, D. J. Light-activated dynamic clamp using iPSC-derived cardiomyocytes. Biophys. J. 115, 2206–2217. https://doi.org/10.1016/j.bpj.2018.10.018 (2018).
Patel, D., Stohlman, J., Dang, Q., Strauss, D. G. & Blinova, K. Assessment of proarrhythmic potential of drugs in optogenetically paced induced pluripotent stem cell-derived cardiomyocytes. Toxicol. Sci. 170, 167–179. https://doi.org/10.1093/toxsci/kfz076 (2019).
Hu, D. et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1α and LDHA. Circ. Res. 123, 1066–1079. https://doi.org/10.1161/circresaha.118.313249 (2018).
Hortigon-Vinagre, M. P. et al. The use of ratiometric fluorescence measurements of the voltage sensitive dye Di-4-ANEPPS to examine action potential characteristics and drug effects on human induced pluripotent stem cell-derived cardiomyocytes. Toxicol. Sci. 154, 320–331. https://doi.org/10.1093/toxsci/kfw171 (2016).
Gilbert, G. et al. Incomplete assembly of the dystrophin-associated protein complex in 2D and 3D-cultured human induced pluripotent stem cell-derived cardiomyocytes. Front. Cell Dev. Biol. 9, 737840. https://doi.org/10.3389/fcell.2021.737840 (2021).
Correia, C. et al. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol. Bioeng. 115, 630–644. https://doi.org/10.1002/bit.26504 (2018).
Parikh, S. S. et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323–1330. https://doi.org/10.1161/circresaha.117.311920 (2017).
Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 13, 657–668. https://doi.org/10.1016/j.stemcr.2019.08.013 (2019).
Beauchamp, P. et al. 3D co-culture of hiPSC-derived cardiomyocytes with cardiac fibroblasts improves tissue-like features of cardiac spheroids. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2020.00014 (2020).
Kane, C. & Terracciano, C. M. Human cardiac fibroblasts engage the sarcoplasmic reticulum in induced pluripotent stem cell-derived cardiomyocyte excitation-contraction coupling. J. Am. Coll. Cardiol. 72, 1061–1063. https://doi.org/10.1016/j.jacc.2018.06.028 (2018).
Dunn, K. K. et al. Coculture of endothelial cells with human pluripotent stem cell-derived cardiac progenitors reveals a differentiation stage-specific enhancement of cardiomyocyte maturation. Biotechnol. J. 14, e1800725. https://doi.org/10.1002/biot.201800725 (2019).
Kowalski, W. J. et al. Sympathetic neurons regulate cardiomyocyte maturation in culture. Front. Cell Develop. Biol. https://doi.org/10.3389/fcell.2022.850645 (2022).
Zhao, Z. et al. Ion channel expression and characterization in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Int. 2018, 6067096. https://doi.org/10.1155/2018/6067096 (2018).
Benzoni, P. et al. Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc. Res. 116, 1147–1160. https://doi.org/10.1093/cvr/cvz217 (2019).
Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860. https://doi.org/10.1038/nmeth.2999 (2014).
Verkerk, A. O. et al. Patch-clamp recordings of action potentials from human atrial myocytes: optimization through dynamic clamp. Front. Pharmacol. 12, 649414. https://doi.org/10.3389/fphar.2021.649414 (2021).
Wettwer, E. et al. Role of IKur in controlling action potential shape and contractility in the human atrium. Circulation 110, 2299–2306. https://doi.org/10.1161/01.CIR.0000145155.60288.71 (2004).
Schulz, C. et al. A critical role of retinoic acid concentration for the induction of a fully human-like atrial action potential phenotype in hiPSC-CM. Stem Cell Rep. 18, 2096–2107. https://doi.org/10.1016/j.stemcr.2023.10.006 (2023).
Mosqueira, D. et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 39, 3879–3892. https://doi.org/10.1093/eurheartj/ehy249 (2018).
Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137. https://doi.org/10.1016/j.stem.2012.09.013 (2013).
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
Bers, D. M., Patton, C. W. & Nuccitelli, R. in Methods in Cell Biology Vol. 99 (Ed. M. Whitaker) 1–26 (Academic Press, 2010).
Butler, A. S., Hancox, J. C. & Marrion, N. V. Preferential formation of human heteromeric SK2:SK3 channels limits homomeric SK channel assembly and function. J. Biol. Chem. 299, 102783. https://doi.org/10.1016/j.jbc.2022.102783 (2023).
Zhou, Z. et al. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys. J. 74, 230–241. https://doi.org/10.1016/S0006-3495(98)77782-3 (1998).
Moreno-Galindo, E. G. et al. Relaxation gating of the acetylcholine-activated inward rectifier K+ current is mediated by intrinsic voltage sensitivity of the muscarinic receptor. J. Physiol. 589, 1755–1767. https://doi.org/10.1113/jphysiol.2010.204115 (2011).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-53571-6