Search
Close this search box.

Implications of maternal-fetal health on perinatal stem cell banking – Gene Therapy

  • Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Sci Transl Med. 2013;5:179ps7 https://doi.org/10.1126/scitranslmed.3005568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339:1565–77. https://doi.org/10.1056/NEJM199811263392201.

    Article  CAS  PubMed  Google Scholar 

  • Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 2001;344:1815–22. https://doi.org/10.1056/NEJM200106143442402.

    Article  CAS  PubMed  Google Scholar 

  • Prasad VK, Mendizabal A, Parikh SH, Szabolcs P, Driscoll TA, Page K, et al. Unrelated donor umbilical cord blood transplantation for inherited metabolic disorders in 159 pediatric patients from a single center: influence of cellular composition of the graft on transplantation outcomes. Blood. 2008;112:2979–89. https://doi.org/10.1182/blood-2008-03-140830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearer WT, Lubin BH, Cairo MS, Notarangelo LD Cord Blood Banking for Potential Future Transplantation. Pediatrics. 2017;140. https://doi.org/10.1542/peds.2017-2695.

  • Ballen K. Umbilical Cord Blood Transplantation: Challenges and Future Directions. Stem Cells Transl Med. 2017;6:1312–5. https://doi.org/10.1002/sctm.17-0069.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotten CM, Murtha AP, Goldberg RN, Grotegut CA, Smith PB, Goldstein RF, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164:973–79. https://doi.org/10.1016/j.jpeds.2013.11.036.

    Article  PubMed  Google Scholar 

  • Laskowitz DT, Bennett ER, Durham RJ, Volpi JJ, Wiese JR, Frankel M, et al. Allogeneic Umbilical Cord Blood Infusion for Adults with Ischemic Stroke: Clinical Outcomes from a Phase I Safety Study. Stem Cells Transl Med. 2018;7:521–9. https://doi.org/10.1002/sctm.18-0008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson G, Sun JM, Davlantis KS, Murias M, Franz L, Troy J, et al. Autologous Cord Blood Infusions Are Safe and Feasible in Young Children with Autism Spectrum Disorder: Results of a Single-Center Phase I Open-Label Trial. Stem Cells Transl Med. 2017;6:1332–9. https://doi.org/10.1002/sctm.16-0474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JM, Song AW, Case LE, Mikati MA, Gustafson KE, Simmons R, et al. Effect of Autologous Cord Blood Infusion on Motor Function and Brain Connectivity in Young Children with Cerebral Palsy: A Randomized, Placebo-Controlled Trial. Stem Cells Transl Med. 2017;6:2071–8. https://doi.org/10.1002/sctm.17-0102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013;22:3192–202. https://doi.org/10.1089/scd.2013.0023.

    Article  CAS  PubMed  Google Scholar 

  • Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG, et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162 https://doi.org/10.1186/s12916-015-0399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C. et al.Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res.2017;121:1192–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie B, Gu P, Wang W, Dong C, Zhang L, Zhang J, et al. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy. Am J Transl Res. 2016;8:3241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Götherström C, Westgren M, Shaw SW, Aström E, Biswas A, Byers PH, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med. 2014;3:255–64. https://doi.org/10.5966/sctm.2013-0090.

    Article  PubMed  Google Scholar 

  • Murphy S, Rosli S, Acharya R, Mathias L, Lim R, Wallace E, et al. Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol. 2010; Chapter 1:1 https://doi.org/10.1002/9780470151808.sc01e06s13.

    Article  Google Scholar 

  • Phan TG, Ma H, Lim R, Sobey CG, Wallace EM. Phase 1 Trial of Amnion Cell Therapy for Ischemic Stroke. Front Neurol. 2018;9:198 https://doi.org/10.3389/fneur.2018.00198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim R, Malhotra A, Tan J, Chan ST, Lau S, Zhu D, et al. First-In-Human Administration of Allogeneic Amnion Cells in Premature Infants With Bronchopulmonary Dysplasia: A Safety Study. Stem Cells Transl Med. 2018;7:628–35. https://doi.org/10.1002/sctm.18-0079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker EK, Malhotra A, Lim R, Jacobs SE, Hooper SB, Davis PG, et al. Human amnion cells for the prevention of bronchopulmonary dysplasia: a protocol for a phase I dose escalation study. BMJ Open. 2019;9:e026265 https://doi.org/10.1136/bmjopen-2018-026265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–8. https://doi.org/10.1056/NEJM198910263211707.

    Article  CAS  PubMed  Google Scholar 

  • Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122:491–8. https://doi.org/10.1182/blood-2013-02-453175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Global Cord Blood & Tissue Industry Database. Bioinformant. https://bioinformant.com/product/global-cord-blood-industry-database/. Published 2020.

  • Lubin BH, Shearer WT. Cord blood banking for potential future transplantation. Pediatrics. 2007;119:165–70. https://doi.org/10.1542/peds.2006-2901.

    Article  PubMed  Google Scholar 

  • Kurtzberg J. A History of Cord Blood Banking and Transplantation. Stem Cells Transl Med. 2017;6:1309–11. https://doi.org/10.1002/sctm.17-0075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballen KK, Verter F, Kurtzberg J. Umbilical cord blood donation: public or private? Bone Marrow Transplant. 2015;50:1271–8. https://doi.org/10.1038/bmt.2015.124.

    Article  CAS  PubMed  Google Scholar 

  • Hollands P, McCauley C. Private cord blood banking: current use and clinical future. Stem Cell Rev reports. 2009;5:195–203. https://doi.org/10.1007/s12015-009-9082-0.

    Article  Google Scholar 

  • Thornley I, Eapen M, Sung L, Lee SJ, Davies SM, Joffe S. Private cord blood banking: experiences and views of pediatric hematopoietic cell transplantation physicians. Pediatrics. 2009;123:1011–7. https://doi.org/10.1542/peds.2008-0436.

    Article  PubMed  Google Scholar 

  • Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, et al. A Randomized, Placebo-Controlled Trial of Human Umbilical Cord Blood Mesenchymal Stem Cell Infusion for Children With Cerebral Palsy. Cell Transplant. 2018;27:325–34. https://doi.org/10.1177/0963689717729379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31:581–91. https://doi.org/10.1002/stem.1304.

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Min K, Jang J, Kim SC, Kang MS, Jang SJ, et al. Involvement of Immune Responses in the Efficacy of Cord Blood Cell Therapy for Cerebral Palsy. Stem Cells Dev. 2015;24:2259–68. https://doi.org/10.1089/scd.2015.0074.

    Article  CAS  PubMed  Google Scholar 

  • Giannopoulou EZ, Puff R, Beyerlein A, von Luettichau I, Boerschmann H, Schatz D, et al. Effect of a single autologous cord blood infusion on beta-cell and immune function in children with new onset type 1 diabetes: a non-randomized, controlled trial. Pediatr Diabetes. 2014;15:100–9. https://doi.org/10.1111/pedi.12072.

    Article  CAS  PubMed  Google Scholar 

  • Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM, et al. Autologous umbilical cord blood infusion followed by oral docosahexaenoic acid and vitamin D supplementation for C-peptide preservation in children with Type 1 diabetes. Biol Blood Marrow Transplant. 2013;19:1126–9. https://doi.org/10.1016/j.bbmt.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3 https://doi.org/10.1186/1741-7015-10-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor MAC, Samuel G, Jordens CFC, Kerridge IH. Umbilical cord blood banking: beyond the public-private divide. J Law Med. 2012;19:512–6.

    PubMed  Google Scholar 

  • Hauskeller C, Beltrame L. The hybrid bioeconomy of umbilical cord blood banking: Re-examining the narrative of opposition between public and private services. Biosocieties. 2016;11:415–34. https://doi.org/10.1057/biosoc.2015.45.

    Article  Google Scholar 

  • Fisk NM, Atun R. Public-private partnership in cord blood banking. BMJ. 2008;336:642–4. https://doi.org/10.1136/bmj.39489.454699.

    Article  PubMed  PubMed Central  Google Scholar 

  • NetCord‐FACT International Standards for Cord Blood Collection, Banking, and Release for Administration. 2019. https://www.factweb.org/forms/store/ProductFormPublic/seventh-edition-netcord-fact-international-standards-for-cord-blood-collection-banking-and-release-for-administration-free-download.

  • Omori A, Hirai M, Chiba T, Takahashi K, Yamaguchi S, Takahashi TA, et al. Quality-assessments of characteristics of placental/umbilical cord blood associated with maternal age- and parity-related factor. Transfus Apher Sci. 2012;46:7–13. https://doi.org/10.1016/j.transci.2011.10.030.

    Article  PubMed  Google Scholar 

  • Urciuoli P, Passeri S, Ceccarelli F, Luchetti B, Paolicchi A, Lapi S, et al. Pre-birth selection of umbilical cord blood donors. Blood Transfus. 2010;8:36–43. https://doi.org/10.2450/2009.0081-09.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaime-Perez JC, Monreal-Robles R, Colunga-Pedraza J, Mancías-Guerra C, Rodríguez-Romo L, Gómez-Almaguer D. Cord blood banking activities at a university hospital in northeast Mexico: an 8-year experience. Transfusion. 2012;52:2606–13. https://doi.org/10.1111/j.1537-2995.2012.03638.

    Article  PubMed  Google Scholar 

  • Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, McGlave PB, Miller JS, et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105:1343–7. https://doi.org/10.1182/blood-2004-07-2717.

    Article  CAS  PubMed  Google Scholar 

  • Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB, et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant. 2002;8:368–76. https://doi.org/10.1053/bbmt.2002.v8.pm12171483.

    Article  PubMed  Google Scholar 

  • de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 2008;41:771–8. https://doi.org/10.1038/sj.bmt.1705979.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 2014;124:3121–8. https://doi.org/10.1172/JCI74556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaroscak J, Goltry K, Smith A, Waters-Pick B, Martin PL, Driscoll TA, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo–expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood. 2003;101:5061–7. https://doi.org/10.1182/blood-2001-12-0290.

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Kwek KYC, Chan JKY, Chen Q, Lim M. The hollow fiber bioreactor as a stroma-supported, serum-free ex vivo expansion platform for human umbilical cord blood cells. Biotechnol J. 2014;9:980–9. https://doi.org/10.1002/biot.201300320.

    Article  CAS  PubMed  Google Scholar 

  • Bari S, Seah KK, Poon Z, Cheung AM, Fan X, Ong SY, et al. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation. Biol Blood Marrow Transplant. 2015;21:1008–19. https://doi.org/10.1016/j.bbmt.2014.12.022.

    Article  PubMed  Google Scholar 

  • Teofili L, Silini AR, Bianchi M, Valentini CG, Parolini O. Incorporating placental tissue in cord blood banking for stem cell transplantation. Expert Rev Hematol. 2018;11:649–61. https://doi.org/10.1080/17474086.2018.1483717.

    Article  CAS  PubMed  Google Scholar 

  • Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final Data for 2017. Natl Vital Stat Rep. 2018;67:1–50.

    PubMed  Google Scholar 

  • Guerrero EN, Vega S, Fu C, De León R, Beltran D, Solis MA. Increased proliferation and differentiation capacity of placenta-derived mesenchymal stem cells from women of median maternal age correlates with telomere shortening. Aging (Albany NY). 2021;13:24542–59. https://doi.org/10.18632/aging.203724.

    Article  CAS  PubMed  Google Scholar 

  • Gil-Kulik P, Świstowska M, Krzyżanowski A, Petniak A, Kwaśniewska A, Płachno BJ, et al. Evaluation of the Impact of Pregnancy-Associated Factors on the Quality of Wharton’s Jelly-Derived Stem Cells Using SOX2 Gene Expression as a Marker. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23147630.

  • Alrefaei GI, Ayuob NN, Ali SS, Al-Karim S. Effects of maternal age on the expression of mesenchymal stem cell markers in the components of human umbilical cord. Folia Histochem Cytobiol. 2015;53:259–71. https://doi.org/10.5603/FHC.a2015.0022.

    Article  CAS  PubMed  Google Scholar 

  • Ballen KK, Wilson M, Wuu J, Ceredona AM, Hsieh C, Stewart FM, et al. Bigger is better: maternal and neonatal predictors of hematopoietic potential of umbilical cord blood units. Bone Marrow Transplant. 2001;27:7–14. https://doi.org/10.1038/sj.bmt.1702729.

    Article  CAS  PubMed  Google Scholar 

  • McGuckin CP, Basford C, Hanger K, Habibollah S, Forraz N. Cord blood revelations—The importance of being a first born girl, big, on time and to a young mother! Early Hum Dev. 2007;83:733–41. https://doi.org/10.1016/j.earlhumdev.2007.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Londero AP, Rossetti E, Pittini C, Cagnacci A, Driul L. Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. BMC Pregnancy Childbirth. 2019;19:261 https://doi.org/10.1186/s12884-019-2400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenny LC, Lavender T, McNamee R, O’Neill SM, Mills T, Khashan AS. Advanced maternal age and adverse pregnancy outcome: evidence from a large contemporary cohort. PLoS One. 2013;8:e56583 https://doi.org/10.1371/journal.pone.0056583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lean SC, Derricott H, Jones RL, Heazell AEP. Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLoS One. 2017;12:e0186287 https://doi.org/10.1371/journal.pone.0186287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laopaiboon M, Lumbiganon P, Intarut N, Mori R, Ganchimeg T, Vogel JP, et al. Advanced maternal age and pregnancy outcomes: a multicountry assessment. BJOG. 2014;121:49–56. https://doi.org/10.1111/1471-0528.12659.

    Article  PubMed  Google Scholar 

  • Ciubotariu R, Scaradavou A, Ciubotariu I, Tarnawski M, Lloyd S, Albano M, et al. Impact of delayed umbilical cord clamping on public cord blood donations: can we help future patients and benefit infant donors? Transfusion. 2018;58:1427–33. https://doi.org/10.1111/trf.14574.

    Article  PubMed  Google Scholar 

  • MacDorman MF, Declercq E. Trends and state variations in out-of-hospital births in the United States, 2004-2017. Birth. 2019;46:279–88. https://doi.org/10.1111/birt.12411.

    Article  PubMed  Google Scholar 

  • Australain R. New Zealand Colleges of Obstetricians and Gynaecologists. Home Birth C-Obs 2 (2017). 2017;42:1–11.

    Google Scholar 

  • Davies-Tuck ML, Wallace EM, Davey M-A, Veitch V, Oats J. Planned private homebirth in Victoria 2000–2015: a retrospective cohort study of Victorian perinatal data. BMC Pregnancy Childbirth. 2018;18:357 https://doi.org/10.1186/s12884-018-1996-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jonge A, Geerts CC, van der Goes BY, Mol BW, Buitendijk SE, Nijhuis JG. Perinatal mortality and morbidity up to 28 days after birth among 743 070 low-risk planned home and hospital births: a cohort study based on three merged national perinatal databases. BJOG. 2015;122:720–8. https://doi.org/10.1111/1471-0528.13084.

    Article  PubMed  Google Scholar 

  • Preterm Birth. 19th Feb 2018. World Health Organisation. 2018.

  • Solves P, López M, Mirabet V, Blanquer A, Roig R, Perales A. Characteristics of umbilical cord blood units collected from preterm deliveries. Gynecol Obstet Invest. 2009;68:181–5. https://doi.org/10.1159/000232382.

    Article  PubMed  Google Scholar 

  • Surbek DV, Holzgreve W, Steinmann C, Hahn S, Gratwohl A, Wodnar-Filipowicz A, et al. Preterm birth and the availability of cord blood for HPC transplantation. Transfusion. 2000;40:817–20. https://doi.org/10.1046/j.1537-2995.2000.40070817.

    Article  CAS  PubMed  Google Scholar 

  • Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100:1611–8. https://doi.org/10.1182/blood-2002-01-0294.

    Article  CAS  PubMed  Google Scholar 

  • Purtill D, Smith K, Devlin S, Meagher R, Tonon J, Lubin M, et al. Dominant unit CD34+ cell dose predicts engraftment after double-unit cord blood transplantation and is influenced by bank practice. Blood. 2014;124:2905–12. https://doi.org/10.1182/blood-2014-03-566216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyrsch A, dalle Carbonare V, Jansen W, Chklovskaia E, Nissen C, Surbek D, et al. Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Exp Hematol. 1999;27:1338–45. https://doi.org/10.1016/s0301-472x(99)00059-4.

    Article  CAS  PubMed  Google Scholar 

  • Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH, Balasubramaniam V. Endothelial colony-forming cells from preterm infants are increased and more susceptible to hyperoxia. Am J Respir Crit Care Med. 2009;180:454–61. https://doi.org/10.1164/rccm.200901-0115OC.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balgi-Agarwal S, Winter C, Corral A, Mustafa SB, Hornsby P, Moreira A. Comparison of Preterm and Term Wharton’s Jelly-Derived Mesenchymal Stem Cell Properties in Different Oxygen Tensions. Cells Tissues Organs. 2018;205:137–50. https://doi.org/10.1159/000489256.

    Article  CAS  PubMed  Google Scholar 

  • Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther. 2018;9:173 https://doi.org/10.1186/s13287-018-0903-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yawno T, Sutherland A, Loose J, Nitsos I, Allison BJ, et al. Term vs. preterm cord blood cells for the prevention of preterm brain injury. Pediatr Res. 2017;82:1030–8. https://doi.org/10.1038/pr.2017.170.

    Article  PubMed  Google Scholar 

  • Zhu D, Kusuma GD, Schwab R, Chan ST, Tan J, Saad MI, et al. Prematurity negatively affects regenerative properties of human amniotic epithelial cells in the context of lung repair. Clin Sci (Lond). 2020;134:2665–79. https://doi.org/10.1042/CS20200859.

    Article  CAS  PubMed  Google Scholar 

  • Kotowski M, Litwinska Z, Klos P, Pius-Sadowska E, Zagrodnik-Ulan E, Ustianowski P, et al. Autologous cord blood transfusion in preterm infants – could its humoral effect be the kez to control prematurity-related complications? A preliminary study. J Physiol Pharmacol an Off J Polish Physiol Soc. 2017;68:921–7.

    CAS  Google Scholar 

  • Khodabux CM, von Lindern JS, van Hilten JA, Scherjon S, Walther FJ, Brand A. A clinical study on the feasibility of autologous cord blood transfusion for anemia of prematurity. Transfusion. 2008;48:1634–43. https://doi.org/10.1111/j.1537-2995.2008.01747.

    Article  PubMed  Google Scholar 

  • Brune T, Garritsen H, Hentschel R, Louwen F, Harms E, Jorch G. Efficacy, recovery, and safety of RBCs from autologous placental blood: clinical experience in 52 newborns. Transfusion. 2003;43:1210–6. https://doi.org/10.1046/j.1537-2995.2003.00503.

    Article  PubMed  Google Scholar 

  • Vogel JP, Souza JP, Mori R, Morisaki N, Lumbiganon P, Laopaiboon M, et al. Maternal complications and perinatal mortality: findings of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG. 2014;121:76–88. https://doi.org/10.1111/1471-0528.12633.

    Article  PubMed  Google Scholar 

  • Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet (London, England). 2006;367:1066–74. https://doi.org/10.1016/S0140-6736(06)68397-9.

    Article  PubMed  Google Scholar 

  • Krielessi V, Papantoniou N, Papageorgiou I, Chatzipapas I, Manios E, Zakopoulos N, et al. Placental Pathology and Blood Pressure’s Level in Women with Hypertensive Disorders in Pregnancy. Obstet Gynecol Int. 2012;2012:684083 https://doi.org/10.1155/2012/684083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pediatrics AAo. National high blood pressure education program working group on high blood pressure in children and adolescents. Pediatrics. 2004;114:iv–iv.

    Article  Google Scholar 

  • Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170:1–7. https://doi.org/10.1016/j.ejogrb.2013.05.005.

    Article  PubMed  Google Scholar 

  • Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. Lancet (London, England). 2016;387:999–1011. https://doi.org/10.1016/S0140-6736(15)00070-7.

    Article  PubMed  Google Scholar 

  • Xia L, Zhou XP, Zhu JH, Xie XD, Zhang H, Wang XX, et al. Decrease and dysfunction of endothelial progenitor cells in umbilical cord blood with maternal pre-eclampsia. J Obstet Gynaecol Res. 2007;33:465–74. https://doi.org/10.1111/j.1447-0756.2007.00555.

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Abe E, Matsubara Y, Kameda K, Ito M. Circulating endothelial progenitor cells during normal pregnancy and pre-eclampsia. Am J Reprod Immunol. 2006;56:79–85. https://doi.org/10.1111/j.1600-0897.2006.00387.

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Lee MJ, Seok OS, Paek YC, Cho GJ, Seol HJ, et al. Cytokine expression in placenta-derived mesenchymal stem cells in patients with pre-eclampsia and normal pregnancies. Cytokine. 2010;49:95–101. https://doi.org/10.1016/j.cyto.2009.08.013.

    Article  CAS  PubMed  Google Scholar 

  • Kusuma GD, Abumaree MH, Perkins AV, Brennecke SP, Kalionis B. Reduced aldehyde dehydrogenase expression in preeclamptic decidual mesenchymal stem/stromal cells is restored by aldehyde dehydrogenase agonists. Sci Rep. 2017;7:42397. https://doi.org/10.1038/srep42397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juber NF, Abdulle A, AlJunaibi A, AlNaeemi A, Ahmad A, Leinberger-Jabari A, et al. Maternal Early-Life Risk Factors and Later Gestational Diabetes Mellitus: A Cross-Sectional Analysis of the UAE Healthy Future Study (UAEHFS). Int J Environ Res Public Health. 2022;19. https://doi.org/10.3390/ijerph191610339.

  • Acosta JC, Haas DM, Saha CK, Dimeglio LA, Ingram DA, Haneline LS. Gestational diabetes mellitus alters maternal and neonatal circulating endothelial progenitor cell subsets. Am J Obstet Gynecol. 2011;204:254.e8–254.e15. https://doi.org/10.1016/j.ajog.2010.10.913.

    Article  PubMed  Google Scholar 

  • Wajid N, Naseem R, Anwar SS, Awan SJ, Ali M, Javed S, et al. The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell Tissue Bank. 2015;16:389–97. https://doi.org/10.1007/s10561-014-9483-4.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS, et al. Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev. 2015;24:575–86. https://doi.org/10.1089/scd.2014.0349.

    Article  CAS  PubMed  Google Scholar 

  • Mathew SA, Bhonde R. Mesenchymal stromal cells isolated from gestationally diabetic human placenta exhibit insulin resistance, decreased clonogenicity and angiogenesis. Placenta. 2017;59:1–8. https://doi.org/10.1016/j.placenta.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Merkhan MM, Forsyth NR, Wu P. Chorionic and amniotic membrane-derived stem cells have distinct, and gestational diabetes mellitus independent, proliferative, differentiation, and immunomodulatory capacities. Stem Cell Res. 2019;40:101537. https://doi.org/10.1016/j.scr.2019.101537.

    Article  PubMed  Google Scholar 

  • Drake P, Driscoll AK, Mathews TJ. Cigarette Smoking During Pregnancy: United States, 2016. NCHS Data Brief. 2018;1–8, no 305.

  • Rua Ede A, Porto ML, Ramos JP, Nogueira BV, Meyrelles SS, Vasquez EC, Pereira TC. Effects of tobacco smoking during pregnancy on oxidative stress in the umbilical cord and mononuclear blood cells of neonates. J Biomed Sci. 2014;21:105. https://doi.org/10.1186/s12929-014-0105.

    Article  PubMed  Google Scholar 

  • Baergen RN. Manual of pathology of the human placenta. Springer Science & Business Media; 2011.

    Book  Google Scholar 

  • Gaccioli F, Lager S. Placental Nutrient Transport and Intrauterine Growth Restriction. Front Physiol. 2016;7:40 https://doi.org/10.3389/fphys.2016.00040.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandò C, Razini P, Novielli C, Anelli GM, Belicchi M, Erratico S, et al. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction. Stem Cells Transl Med. 2016;5:451–63. https://doi.org/10.5966/sctm.2015-0155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipos PI, Bourque SL, Hubel CA, Baker PN, Sibley CP, Davidge ST, et al. Endothelial Colony-Forming Cells Derived From Pregnancies Complicated by Intrauterine Growth Restriction Are Fewer and Have Reduced Vasculogenic Capacity. J Clin Endocrinol Metab. 2013;98:4953–60. https://doi.org/10.1210/jc.2013-2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James JL, Srinivasan S, Alexander M, Chamley LW. Can we fix it? Evaluating the potential of placental stem cells for the treatment of pregnancy disorders. Placenta. 2014;35:77–84. https://doi.org/10.1016/j.placenta.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Okun N, Sierra S. Pregnancy outcomes after assisted human reproduction. J Obstet Gynaecol Canada. 2014;36:64–83. https://doi.org/10.1016/S1701-2163(15)30685.

    Article  Google Scholar 

  • Datta J, Palmer MJ, Tanton C, Gibson LJ, Jones KG, Macdowall W, et al. Prevalence of infertility and help seeking among 15 000 women and men. Hum Reprod. 2016;31:2108–18. https://doi.org/10.1093/humrep/dew123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley L, Doyle P, Maconochie N. Lifetime prevalence of infertility and infertility treatment in the UK: results from a population-based survey of reproduction. Hum Reprod. 2008;23:447–50. https://doi.org/10.1093/humrep/dem369.

    Article  CAS  PubMed  Google Scholar 

  • Lui Yovich J. Founding pioneers of IVF update: Innovative researchers generating livebirths by 1982. Reprod Biol. 2020;20:111–3. https://doi.org/10.1016/j.repbio.2019.12.008.

    Article  PubMed  Google Scholar 

  • Banker M, Mehta V, Sorathiya D, Dave M, Shah S. Pregnancy outcomes and maternal and perinatal complications of pregnancies following in vitro fertilization/intracytoplasmic sperm injection using own oocytes, donor oocytes, and vitrified embryos: A prospective follow-up study. J Hum Reprod Sci. 2016;9:241–9. https://doi.org/10.4103/0974-1208.197666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luke B, Gopal D, Cabral H, Stern JE, Diop H. Pregnancy, birth, and infant outcomes by maternal fertility status: the Massachusetts Outcomes Study of Assisted Reproductive Technology. Am J Obstet Gynecol. 2017;217:327. https://doi.org/10.1016/j.ajog.2017.04.006.

    Article  PubMed Central  Google Scholar 

  • Sciascia S, Hunt BJ, Talavera-Garcia E, Lliso G, Khamashta MA, Cuadrado MJ. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. Am J Obstet Gynecol. 2016;214:273. https://doi.org/10.1016/j.ajog.2015.09.078.

    Article  Google Scholar 

  • Breton M-C, Beauchesne M-F, Lemière C, Rey É, Forget A, Blais L. Risk of perinatal mortality associated with inhaled corticosteroid use for the treatment of asthma during pregnancy. J Allergy Clin Immunol. 2010;126:772–777. https://doi.org/10.1016/j.jaci.2010.08.018.

    Article  CAS  PubMed  Google Scholar 

  • Mandel SJ. Hypothyroidism and chronic autoimmune thyroiditis in the pregnant state: maternal aspects. Best Pract Res Clin Endocrinol Metab. 2004;18:213–24. https://doi.org/10.1016/j.beem.2004.03.006.

    Article  CAS  PubMed  Google Scholar 

  • Latest Intelligence