
Olaciregui, M. et al. Cryopreservation of epididymal stallion sperm. Cryobiology 68, 91–95 (2014).
Mota-Filho, A. C. et al. Cryopreservation of canine epididymal sperm using ACP-106c and TRIS. Cryobiology 69, 17–21 (2014).
Watson, P. F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60, 481–492 (2000).
Ramón, M. et al. Sperm cell population dynamics in ram semen during the cryopreservation process. PLoS ONE 8, e59189 (2013).
Holt, W. Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 62, 3–22 (2000).
Parks, J. E. & Graham, J. K. Effects of cryopreservation procedures on sperm membranes. Theriogenology 38, 209–222 (1992).
Watson, P. The Effects of Cold Shock on Sperm Cell Membranes. Effects of Low Temperatures on Biological Membranes 189–218 (Springer, 1981).
Gao, D. et al. Andrology: Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum. Reprod. 10, 1109–1122 (1995).
Watson, P. & Duncan, A. E. Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa. Cryobiology 25, 131–142 (1988).
Watson, P. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 7, 871–891 (1995).
El-Sherry, T. M., Elsayed, M., Abdelhafez, H. K. & Abdelgawad, M. Characterization of rheotaxis of bull sperm using microfluidics. Integr. Biol. 6, 1111–1121 (2014).
Nagata, M. B. et al. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. J. Anim. Sci. Biotechnol. 10, 1–14 (2019).
De Martin, H. et al. Positive rheotaxis extended drop: A one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 34, 1699–1708 (2017).
Sarbandi, I. R., Lesani, A., Moghimi Zand, M. & Nosrati, R. Rheotaxis-based sperm separation using a biomimicry microfluidic device. Sci. Rep. 11, 18327 (2021).
Romero-Aguirregomezcorta, J. et al. Sperm selection by rheotaxis improves sperm quality and early embryo development. Reproduction 161, 343–352 (2021).
Ataei, A., Lau, A. & Asghar, W. A microfluidic sperm-sorting device based on rheotaxis effect. Microfluidics Nanofluidics 25, 52 (2021).
Hammerstedt, R. H., Graham, J. K. & Nolan, J. P. Cryopreservation of mammalian sperm: What we ask them to survive. J. Androl. 11, 73–88 (1990).
Ardon, F. & Suarez, S. S. Cryopreservation increases coating of bull sperm by seminal plasma binder of sperm proteins BSP1, BSP3, and BSP5. Reproduction 146, 111–117 (2013).
Muiño, R., Peña, A., Rodríguez, A., Tamargo, C. & Hidalgo, C. Effects of cryopreservation on the motile sperm subpopulations in semen from Asturiana de los Valles bulls. Theriogenology 72, 860–868 (2009).
Yoon, S.-J., Kwon, W.-S., Rahman, M. S., Lee, J.-S. & Pang, M.-G. A novel approach to identifying physical markers of cryo-damage in bull spermatozoa. PLoS One 10, e0126232 (2015).
Du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Biol. 18, e3000411 (2020).
El-sherry, T., Abdel-Ghani, M., Abou-Khalil, N., Elsayed, M. & Abdelgawad, M. Effect of pH on rheotaxis of bull sperm using microfluidics. Reprod. Domest. Anim. 52, 781–790 (2017).
Murphy, E. M. et al. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. J. Anim. Sci. 96, 2408–2418 (2018).
Baracaldo, M. I., Barth, A. & Bertrand, W. Steps for Freezing Bovine Semen: From Semen Collection to the Liquid Nitrogen Tank (IVIS, 2006).
Nasser, G. A., Fath El-Bab, A. M., Abdel-Mawgood, A. L., Mohamed, H. & Saleh, A. M. CO2 laser fabrication of PMMA microfluidic double T-junction device with modified inlet-angle for cost-effective PCR application. Micromachines 10, 678 (2019).
Duffy, D. C., McDonald, J. C., Schueller, O. J. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).
Haubert, K., Drier, T. & Beebe, D. PDMS bonding by means of a portable, low-cost corona system. Lab Chip 6, 1548–1549 (2006).
Moscovici, M., Chien, W.-Y., Abdelgawad, M. & Sun, Y. Electrical power free, low dead volume, pressure-driven pumping for microfluidic applications. Biomicrofluidics 4, 046501 (2010).
Munson, B., Young, D. & Okiishi, T. Fundamentals of Fluids Mechanics, Edisi 4 (Wiley, 2002).
Shah, R. & Al, L. Laminar Flow Forced Convection in Ducts. A Source Book Compact Heat Exchanger Analytical Data (Springer, 1978).
Elsayed, M., El-Sherry, T. M. & Abdelgawad, M. Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J. Theriogenology 84, 1367–1377 (2015).
Yoon, S. J. et al. Proteomic identification of cryostress in epididymal spermatozoa. J. Anim. Sci. Biotechnol. 7, 1–12 (2016).
Hyakutake, T., Suzuki, H. & Yamamoto, S. Effect of non-Newtonian fluid properties on bovine sperm motility. J. Biomech. 48, 2941–2947 (2015).
Said, T. M., Gaglani, A. & Agarwal, A. Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online 21, 456–462 (2010).
Sarıözkan, S., Bucak, M. N., Tuncer, P. B., Ulutaş, P. A. & Bilgen, A. The influence of cysteine and taurine on microscopic–oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 58, 134–138 (2009).
De Lamirande, E. & Gagnon, C. Reactive oxygen species and human spermatozoa: I. Effects on the motility of intact spermatozoa and on sperm axonemes. J. Androl. 13, 368–378 (1992).
Yoon, S.-J., Rahman, M. S., Kwon, W.-S., Park, Y.-J. & Pang, M.-G. Addition of cryoprotectant significantly alters the epididymal sperm proteome. PLoS One 11, e0152690 (2016).
Barbas, J., Leahy, T., Horta, A. & García-Herreros, M. Sperm kinematics and subpopulational responses during the cryopreservation process in caprine ejaculates. Cryobiology 82, 137–147 (2018).
Bravo, M. et al. Changes in tyrosine phosphorylation associated with true capacitation and capacitation-like state in boar spermatozoa. Mol. Reprod. Dev.: Incorporat. Gamete Res. 71, 88–96 (2005).
Herreros, M. G. et al. Boar sperm velocity and motility patterns under capacitating and non-capacitating incubation conditions. Theriogenology 63, 795–805 (2005).
Gil, M. et al. Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen. Theriogenology 71, 254–263 (2009).
Cormier, N., Sirard, M. A. & Bailey, J. L. Premature capacitation of bovine spermatozoa is initiated by cryopreservation. J. Androl. 18, 461–468 (1997).
Chamberland, A. et al. The effect of heparin on motility parameters and protein phosphorylation during bovine sperm capacitation. Theriogenology 55, 823–835 (2001).
Rahman, M. S., Lee, J.-S., Kwon, W.-S. & Pang, M.-G. Sperm proteomics: Road to male fertility and contraception. Int. J. Endocrinol. 2013, 1–11 (2013).
Kwon, W.-S., Rahman, M. S. & Pang, M.-G. Diagnosis and prognosis of male infertility in mammal: The focusing of tyrosine phosphorylation and phosphotyrosine proteins. J. Proteome Res. 13, 4505–4517 (2014).
Farrell, P., Presicce, G., Brockett, C. & Foote, R. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49, 871–879 (1998).
Lemma, A. Effect of cryopreservation on sperm quality and fertility. Artif. Insemin. Farm Anim. 12, 191–216 (2011).
Roca, J. et al. Non-viable sperm in the ejaculate: Lethal escorts for contemporary viable sperm. Anim. Reprod. Sci. 169, 24–31 (2016).
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. Rheotaxis facilitates upstream navigation of mammalian sperm cells. Elife 3, e02403 (2014).
Miki, K. & Clapham, D. E. Rheotaxis guides mammalian sperm. Curr. Biol. 23, 443–452 (2013).
Marcos-Fu, H. C., Powers, T. R. & Stocker, R. Bacterial rheotaxis. Proc. Natl. Acad. Sci. 109, 4780–4785 (2012).
Zhang, Z. et al. Human sperm rheotaxis: A passive physical process. Sci. Rep. 6, 23553 (2016).
Tung, C.-K. et al. Emergence of upstream swimming via a hydrodynamic transition. Phys. Rev. Lett. 114, 108102 (2015).
Mannowetz, N., Naidoo, N. M., Choo, S.-A.S., Smith, J. F. & Lishko, P. V. Slo1 is the principal potassium channel of human spermatozoa. elife 2, e01009 (2013).
Phillips, D. M. & Kalay, D. Mechanisms of flagellar motility deduced from backward-swimming bull sperm. J. Exp. Zool. 231, 109–116 (1984).
Alapati, R. et al. Comparison of the permeability properties and post-thaw motility of ejaculated and epididymal bovine spermatozoa. Cryobiology 59, 164–170 (2009).
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl. Acad. Sci. 110, 1187–1192 (2013).
Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).
Drescher, K., Goldstein, R. E., Michel, N., Polin, M. & Tuval, I. Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105, 168101 (2010).
Singh, A. V. et al. Mechanical coupling of puller and pusher active microswimmers influences motility. Langmuir 36, 5435–5443 (2020).
Daddi-Moussa-Ider, A., Lisicki, M. & Mathijssen, A. J. Tuning the upstream swimming of microrobots by shape and cargo size. Phys. Rev Appl. 14, 024071 (2020).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-61617-y