Search
Close this search box.

Identification and characterization of Glycolate oxidase gene family in garden lettuce (Lactuca sativa cv. ‘Salinas’) and its response under various biotic, abiotic, and developmental stresses – Scientific Reports

  • Aderinola, O. & Kusemiju, V. Heavy metals concentration in Garden lettuce (Lactuca sativa L.) grown along Badagry expressway, Lagos. Nigeria. Transnatl. J. Sci. Technol. 2, 115–130 (2012).

    Google Scholar 

  • Shatilov, M., Razin, A., & Ivanova, M. Analysis of the world lettuce market. Paper presented at the IOP Conference Series: Earth and Environmental Science (2019).

  • Hasan, M., Tahsin, A., Islam, M., Ali, M. A. & Uddain, J. Growth and yield of lettuce (Lactuca sativa L.) influenced as nitrogen fertilizer and plant spacing. J. Agric. Vet. Sci. 10, 62–71 (2017).

    Google Scholar 

  • Pink, D. & Keane, E. M. Lettuce: Lactuca sativa L. In Genetic Improvement of Vegetable Crops 543–571 (Elsevier, 1993).

    Chapter  Google Scholar 

  • Park, S., Shi, A. & Mou, B. Genome-wide identification and expression analysis of the CBF/DREB1 gene family in lettuce. Sci. Rep. 10, 1–14 (2020).

    CAS  Google Scholar 

  • Koike, S. T., Gladders, P. & Paulus, A. O. Vegetable Diseases: A Color Handbook (Gulf Professional Publishing, 2007).

    Google Scholar 

  • Fertet, A. et al. Sequence of the mitochondrial genome of Lactuca virosa suggests an unexpected role in Lactuca sativa’s evolution. Front. Plant Sci. 12, 697136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Simko, I. et al. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce. Sci. Rep. 3, 1–10 (2013).

    Article  Google Scholar 

  • Reyes-Chin-Wo, S. et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8, 1–11 (2017).

    Article  Google Scholar 

  • Thompson, R. C., Whitaker, T. W. & Kosar, W. F. Interspecific genetic relationships in Lactuca. J. Agric. Res. 63, 91–107 (1941).

    Google Scholar 

  • Gómez, C. & Jiménez, J. Effect of end-of-production high-energy radiation on nutritional quality of indoor-grown red-leaf lettuce. HortScience 55, 1055–1060 (2020).

    Article  Google Scholar 

  • Resh, H. M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower (CRC Press, 2012).

    Google Scholar 

  • Zhou, C. et al. Light quality affected the growth and root organic carbon and autotoxin secretions of hydroponic lettuce. Plants 9, 1542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Materska, M. et al. Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. Eur. Food Res. Technol. 245, 733–744 (2019).

    Article  CAS  Google Scholar 

  • Nicolle, C. et al. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 23, 605–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Jongen, W. Improving the Safety of Fresh Fruit and Vegetables (Elsevier, 2005).

    Book  Google Scholar 

  • Rojas, C. M. et al. Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24, 336–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer, C. H., Bloom, A. J., Queval, G. & Noctor, G. Photorespiratory metabolism: Genes, mutants, energetics, and redox signaling. Ann. Rev. Plant Boil. 60, 455–484 (2009).

    Article  CAS  Google Scholar 

  • Florian, A., Araújo, W. & Fernie, A. New insights into photorespiration obtained from metabolomics. Plant Biol. 15, 656–666 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Wingler, A., Lea, P. J., Quick, W. P. & Leegood, R. C. Photorespiration: Metabolic pathways and their role in stress protection. Philos. Trans. Roy. Soc. Lond. Ser. B Biol. Sci. 355, 1517–1529 (2000).

    Article  CAS  Google Scholar 

  • Reumann, S., Ma, C., Lemke, S. & Babujee, L. AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol. 136, 2587–2608 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y.-P., Yang, J. & Cai, X.-Z. Glycolate oxidase gene family in Nicotiana benthamiana: Genome-wide identification and functional analyses in disease resistance. Sci. Rep. 8, 1–11 (2018).

    ADS  Google Scholar 

  • Rojas, C. M. & Mysore, K. S. Glycolate oxidase is an alternative source for H2O2 production during plant defense responses and functions independently from NADPH oxidase. Plant Signal. Behav. 7, 752–755 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. et al. Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS One 7, e39658 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C. C. & Kao, C. H. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul. 30, 151–155 (2000).

    Article  CAS  Google Scholar 

  • Moran, J. F. et al. Drought induces oxidative stress in pea plants. Planta 194, 346–352 (1994).

    Article  CAS  Google Scholar 

  • Xu, H. et al. Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J. Exp. Bot. 60, 1799–1809 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Chern, M., Bai, W., Chen, X., Canlas, P. E. & Ronald, P. C. Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice. PeerJ 1, e28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P. & Brutnell, T. P. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol. 149, 195–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachroo, A. et al. Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res. 12, 577–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yu, L. et al. Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J. Exp. Bot. 61, 1625–1634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, J., Kim, H. U., Nakata, P. A. & Browse, J. A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis. Plant Cell 24, 1217–1229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, G. et al. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea. World J. Microbiol. Biotechnol. 35, 36 (2019).

    Article  PubMed  Google Scholar 

  • Williams, B., Kabbage, M., Kim, H.-J., Britt, R. & Dickman, M. B. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog. 7, e1002107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha, S. & Cossins, E. The importance of glyoxylate in amino acid biosynthesis in plants. Biochem. J. 96, 254–261 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H.-W. et al. Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J. Exp. Bot. 57, 1899–1908 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Xu, Y.-P., Yang, J., Chen, G.-Y. & Cai, X.-Z. Hydrogen peroxide is indispensable to Xanthomonas oryzae pv. oryzae-induced hypersensitive response and nonhost resistance in Nicotiana benthamiana. Austral. Plant Pathol. 44, 611–617 (2015).

    Article  Google Scholar 

  • Pastor, V. et al. Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis. Mol. Plant–Microbe Interact. 26, 1334–1344 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Scheler, C., Durner, J. & Astier, J. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16, 534–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N. et al. Respiratory burst oxidases: The engines of ROS signaling. Curr. Opin. Plant Biol. 14, 691–699 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Skelly, M. J. & Loake, G. J. Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance. Antioxidants Redox Signal. 19, 990–997 (2013).

    Article  CAS  Google Scholar 

  • Choi, K. Y., Paek, K. Y. & Lee, Y. B. Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory. In Transplant Production in the 21st Century 166–171 (Springer, 2000).

    Chapter  Google Scholar 

  • Thompson, H. C., Langhans, R. W., Both, A.-J. & Albright, L. D. Shoot and root temperature effects on lettuce growth in a floating hydroponic system. J. Am. Soc. Horticult. Sci. 123, 361–364 (1998).

    Article  Google Scholar 

  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytologist 203, 32–43 (2014).

    Article  PubMed  Google Scholar 

  • Zhou, S., Chen, F.-C., Nahashon, S. & Chen, T. Cloning and characterization of glycolate oxidase and NADH-dependent hydropyruvate reductase genes in Pachysandra terminalis. HortScience 41, 1226–1230 (2006).

    Article  CAS  Google Scholar 

  • Sunil, B., Saini, D., Bapatla, R. B., Aswani, V. & Raghavendra, A. S. Photorespiration is complemented by cyclic electron flow and the alternative oxidase pathway to optimize photosynthesis and protect against abiotic stress. Photosynth. Res. 139, 67–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gauslaa, Y. & Solhaug, K. High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria—Interactions of irradiance, exposure duration and high temperature. J. Exp. Bot. 50, 697–705 (1999).

    CAS  Google Scholar 

  • Chen, Z. et al. Inflorescence development and the role of LsFT in regulating bolting in lettuce (Lactuca sativa L.). Front. Plant Sci. 8, 2248 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar, U. & Choudhuri, M. Glycolate content, glycolate oxidase and catalase activity in intact sunflower plant during ageing and development. Biochemie und Physiologie der Pflanzen 175, 23–28 (1980).

    Article  CAS  Google Scholar 

  • Hu, W. et al. Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf. 98, 303–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Baldantoni, D., Morra, L., Zaccardelli, M. & Alfani, A. Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol. Environ. Saf. 123, 89–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Sun, G., Wang, Y., Wei, X., Xiao, Y., Xu, X., & Tang, Y. Effects of exogenous indole-3-acetic acid on the photosynthesis characteristics of lettuce under cadmium stress. Paper Presented at the E3S Web of Conferences (2019).

  • Gonzalez, N., Vanhaeren, H. & Inzé, D. Leaf size control: Complex coordination of cell division and expansion. Trends Plant Sci. 17, 332–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Ann. Rev. Plant Biol. 61, 235–261 (2010).

    Article  CAS  Google Scholar 

  • Cheng, Y.-L. & Tu, S.-L. Alternative splicing and cross-talk with light signaling. Plant Cell Physiol. 59, 1104–1110 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Timm, S. & Hagemann, M. Photorespiration—How is it regulated and how does it regulate overall plant metabolism?. J. Exp. Bot. 71, 3955–3965 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. et al. Systematic identification and analysis of light-responsive circular RNA and co-expression networks in lettuce (Lactuca sativa). G3 Genes Genom. Genet. 10, 2397–2410 (2020).

    Article  CAS  Google Scholar 

  • Boddy, L. Pathogens of autotrophs. In The Fungi 245–292 (Academic Press, 2016).

    Chapter  Google Scholar 

  • Mieslerova, B., Lebeda, A., Petrželová, I. & Korbelova, P. Incidence of lettuce downy mildew (Bremia lactucae) and powdery mildew (Golovinomyces cichoracearum) in natural populations of prickly lettuce (Lactuca serriola). Plant Protect. Sci. 49, S24–S32 (2013).

    Article  Google Scholar 

  • Fan, J. & Doerner, P. Genetic and molecular basis of nonhost disease resistance: Complex, yes; silver bullet, no. Curr. Opinion Plant Biol. 15, 400–406 (2012).

    Article  CAS  Google Scholar 

  • Lebeda, A. & Petrželová, I. Variation and distribution of virulence phenotypes of Bremia lactucae in natural populations of Lactuca serriola. Plant Pathol. 53, 316–324 (2004).

    Article  Google Scholar 

  • Lebeda, A., Sedlářová, M., Petřivalský, M. & Prokopová, J. Diversity of defence mechanisms in plant–oomycete interactions: A case study of Lactuca spp. and Bremia lactucae. Eur. J. Plant Pathol. 122, 71–89 (2008).

    Article  Google Scholar 

  • Carbone, F. et al. Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. PLoS One 14, e0221460. https://doi.org/10.1371/journal.pone.0221460 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samad, A. F. A. MicroRNA and transcription factor: Key players in plant regulatory network. Front. Plant Sci. 8, 565 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Spanudakis, E. The role of microRNAs in the control of flowering time. J. Exp. Bot. 2, 365–380 (2014).

    Article  Google Scholar 

  • Terzi, L. & Simpson, G. Regulation of flowering time by RNA processing. Nuclear Pre-mRNA Process. Plants 25, 201–218 (2008).

    Article  Google Scholar 

  • Lu, Y. et al. Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice. Physiologia Plantarum 150, 463–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L. & Foyer, C. H. Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration?. Ann. Bot. 89, 841–850 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller, I. M., Jensen, P. E. & Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459–481 (2007).

    Article  PubMed  Google Scholar 

  • Soldatenko, A. et al. The economy of vegetable growing: The state and the present. Russ. Veg. 5, 63–68 (2018).

    Google Scholar 

  • Koralewski, T. E. & Krutovsky, K. V. Evolution of exon–intron structure and alternative splicing. PLoS One 6, e18055. https://doi.org/10.1371/journal.pone.0018055 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R. & Jeong, S.-S. Functional prediction: Identification of protein orthologs and paralogs. Protein Sci. 9, 2344–2353 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, Y., Gao, P. & Yuan, J. S. Plant protein-protein interaction network and interactome. Curr. Genom. 11, 40–46 (2010).

    Article  CAS  Google Scholar 

  • Engqvist, M. K., Eßer, C., Maier, A., Lercher, M. J. & Maurino, V. G. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion 19, 275–281 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Engqvist, M. K. et al. GLYCOLATE OXIDASE3, a glycolate oxidase homolog of yeast L-lactate cytochrome c oxidoreductase, supports L-lactate oxidation in roots of Arabidopsis. Plant Physiol. 169, 1042–1061 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bondarenko, V. S. & Gelfand, M. S. Evolution of the exon–intron structure in ciliate genomes. PLoS One 11, e0161476. https://doi.org/10.1371/journal.pone.0161476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchy, N., Lehti-Shiu, M. & Shiu, S.-H. Evolution of gene duplication in plants. Plant Physiol. 171, 2294–2316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, R. C. & Purugganan, M. D. The evolutionary dynamics of plant duplicate genes. Curr. Opin. Plant Boil. 8, 122–128 (2005).

    Article  CAS  Google Scholar 

  • Taylor, J. S. & Raes, J. Duplication and divergence: The evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615–643 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Xie, T. et al. Genome-wide analysis of the lateral organ boundaries domain gene family in Brassica napus. Genes 11, 280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst, L. D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. TRENDS Genet. 9, 486–487 (2002).

    Article  Google Scholar 

  • Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evolut. 15, 496–503 (2000).

    Article  CAS  Google Scholar 

  • Morgan, C. C., Loughran, N. B., Walsh, T. A., Harrison, A. J. & O’Connell, M. J. Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins. BMC Evolut. Boil. 10, 39 (2010).

    Article  Google Scholar 

  • Zhang, Y., Gao, P. & Yuan, J. S. Plant protein–protein interaction network and interactome. Curr. Genom. 11, 40–46 (2010).

    Article  CAS  Google Scholar 

  • McMillan, D. G. et al. Protein–protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J. Am. Chem. Soc. 135, 10550–10556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, M. R. Does GABA act as a signal in plants? Hints from molecular studies: Hints from molecular studies. Plant Signal. Behav. 2, 408–409 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurino, V. G., & Engqvist, M. K. 2-Hydroxy acids in plant metabolism. The Arabidopsis book/American Society of Plant Biologists 13 (2015).

  • Tolbert, N., Oeser, A., Kisaki, T., Hageman, R. & Yamazaki, R. Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. Biol. Chem. 243, 5179–5184 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma, A., Tetali, S. D., Selinski, J., Scheibe, R. & Padmasree, K. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann. Bot. 116, 555–569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnao, M. B. & Hernández-Ruiz, J. Melatonin: plant growth regulator and/or biostimulator during stress?. Trends Plant Sci. 19, 789–797 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Hasan, M. K. et al. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front. Plant Sci. 6, 601 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moya-Garzon, M. D. et al. New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. Eur. J. Med. Chem. 237, 114396 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, Y., Rubin, A. E. & Kilfin, G. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). Eur. J. Plant Pathol. 126, 553–573 (2010).

    Article  CAS  Google Scholar 

  • Xia, K., Pan, X., Chen, H., Xu, X. & Zhang, M. Rice miR168a-5p regulates seed length, nitrogen allocation and salt tolerance by targeting OsOFP3, OsNPF2. 4 and OsAGO1a, respectively. J. Plant Physiol. 280, 153905 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. et al. CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. Plant Biotechnol. J. 20, 310–322 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret, H. AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS One 4, e6442 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Xie, Z., Kasschau, K. D. & Carrington, J. C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Xie, Z. et al. Expression of Arabidopsis MIRNA genes. Plant Physiol. 138, 2145–2154 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret, H., Mallory, A. C. & Bartel, D. P. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol. Cell 22, 129–136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501–506 (2005).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Winter, D. et al. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2, e718 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Pick, T. R. et al. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc. Natl. Acad. Sci. 110, 3185–3190 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, X. et al. Expression analysis of oxalate metabolic pathway genes reveals oxalate regulation patterns in spinach. Molecules 23, 1286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, K. et al. SpinachBase: A central portal for spinach genomics. Database 2019, 72 (2019).

    Article  Google Scholar 

  • Goodstein, D. et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Goodstein, D., et al. Phytozome Comparative Plant Genomics Portal (2014).

  • Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Lu, S. et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268. https://doi.org/10.1093/nar/gkz991 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger, E., et al. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook 571–607. Springer (2005).

  • Bernhofer, M. et al. Nlsdb—Major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res. 46, 503–508 (2018).

    Article  Google Scholar 

  • Nair, R., Carter, P. & Rost, B. NLSdb: Database of nuclear localization signals. Nucleic Acids Res. 31, 397–399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO Rep. 1, 411–415 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton, P., Park, K.-J., Obayashi, T., & Nakai, K. Protein subcellular localization prediction with WoLF PSORT. Paper presented at the Proceedings of the 4th Asia-Pacific Bioinformatics Conference (2006).

  • Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protocol. Bioinform. 1, 2–3 (2003).

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Boil. Evolut. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).

    Article  CAS  Google Scholar 

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Boil. Evolut. 38, 3022–3027 (2021).

    Article  CAS  Google Scholar 

  • Guo, A.-Y., Zhu, Q.-H., Chen, X. & Luo, J.-C. GSDS: A gene structure display server. Yi Chuan Hereditas 29, 1023–1026 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hu, B. et al. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 31, 1296–1297. https://doi.org/10.1093/bioinformatics/btu817 (2015).

    Article  PubMed  Google Scholar 

  • Bailey, T. L. et al. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Brown, G. R. et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 43, D36–D42 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. et al. NCBI BLAST: A better web interface. Nucleic Acids Res. 36, W5–W9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49–e49 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Li, J. & Paterson, A. H. MCScanX-transposed: Detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29, 1458–1460. https://doi.org/10.1093/bioinformatics/btt150 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2012).

    Article  CAS  Google Scholar 

  • Biłas, R., Szafran, K., Hnatuszko-Konka, K. & Kononowicz, A. K. Cis-regulatory elements used to control gene expression in plants. Plant Cell Tissue Organ Cult. 127, 269–287 (2016).

    Article  Google Scholar 

  • Bülow, L., & Hehl, R. Bioinformatic identification of conserved cis-sequences in coregulated genes. In Plant Synthetic Promoters 233–245. Springer (2016).

  • Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Chen, H., He, Y., & Xia, R. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv 289660 (2018).

  • Heng, H., Guoqiang, H., Jin, S., Fengli, Z. & Dabing, Z. Bioinformatics analysis for piezo in rice. Reprod. Breed. 1, 108–113 (2021).

    Article  Google Scholar 

  • Tong, M. et al. Identification and functional analysis of the CorA/MGT/MRS2-type magnesium transporter in banana. PLoS One 15, e0239058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk, D. et al. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Yu, X. et al. Comparative analysis of Italian Lettuce (Lactuca sativa L. var. ramose) transcriptome profiles reveals the molecular mechanism on exogenous melatonin preventing cadmium toxicity. Genes 13, 955 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, C. et al. LsAP2 regulates leaf morphology by inhibiting CIN-like TCP transcription factors and repressing LsKAN2 in lettuce. Horticult. Res. 8, 24 (2021).

    Article  Google Scholar 

  • Dai, X., Zhuang, Z. & Zhao, P. X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z. et al. PmiREN: A comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res. 48, D1114–D1121 (2020).

    Article  CAS  PubMed  Google Scholar