Human midbrain organoids: a powerful tool for advanced Parkinson’s disease modeling and therapy exploration – npj Parkinson’s Disease

  • Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5), 2283–2301 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).

    Article 

    Google Scholar
     

  • Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. Lancet 397, 2284–2303 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Obeso, J. A. et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 32, 1264–1310 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 509 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sulzer, D. & Surmeier, D. J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov. Disord. 28, 41–50 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chandra, R., Hiniker, A., Kuo, Y.-M., Nussbaum, R. L. & Liddle, R. A. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2, e92295 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spillantini, M. G. et al. Α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Wakabayashi, K., Hayashi, S., Yoshimoto, M., Kudo, H. & Takahashi, H. NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 99, 14–20 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Michel, P. P., Hirsch, E. C. & Hunot, S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90, 675–691 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, G. et al. New perspectives on roles of Α-synuclein in Parkinson’s disease. Front. Aging Neurosci. 10, 370 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, X.-S., Geng, W.-S. & Jia, J.-J. Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10, 1759091418777438 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chia, S. J., Tan, E.-K. & Chao, Y.-X. Historical perspective: models of Parkinson’s disease. Int. J. Mol. Sci. 21, 2464 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasser, T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev. Mol. Med. 11, e22 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Taguchi, T., Ikuno, M., Yamakado, H. & Takahashi, R. Animal model for prodromal Parkinson’s disease. Int. J. Mol. Sci. 21, 1961 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartung, T. Thoughts on limitations of animal models. Parkinsonism Relat. Disord. 14(Suppl 2), S81–S83 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kokjohn, T. A. & Roher, A. E. Amyloid precursor protein transgenic mouse models and Alzheimer’s disease: understanding the paradigms, limitations, and contributions. Alzheimers Dement. 5, 340–347 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolbrant, S., Heuer, A., Parmar, M. & Kirkeby, A. Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat. Protoc. 12, 1962–1979 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA 97, 11869–11874 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zecca, L., Zucca, F. A., Wilms, H. & Sulzer, D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26, 578–580 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Pașca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Modeling G2019S-LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Rep. 12, 518–531 (2019).

    Article 

    Google Scholar
     

  • Ren, W. et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc. Natl Acad. Sci. USA 111, 16401–16406 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Y. et al. The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells. Nat. Protoc. 9, 2693–2704 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Rookmaaker, M. B., Schutgens, F., Verhaar, M. C. & Clevers, H. Development and application of human adult stem or progenitor cell organoids. Nat. Rev. Nephrol. 11, 546–554 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, J. W., Cugola, F. R. & Muotri, A. R. Brain organoids as tools for modeling human neurodevelopmental disorders. Physiology 34, 365–375 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S.-H. & Chang, M.-Y. Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases. Int. J. Mol. Sci. 24, 12528 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10, 537–550 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pamies, D. et al. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX 34, 362–376 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tieng, V. et al. Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev. 23, 1535–1547 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jo, J. et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monzel, A. S. et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 8, 1144–1154 (2017).

    Article 

    Google Scholar
     

  • Kwak, T. H. et al. Generation of homogeneous midbrain organoids with in vivo-like cellular composition facilitates neurotoxin-based Parkinson’s disease modeling. Stem Cells 38, 727–740 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiklová, K. et al. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10, 581 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J. Clin. Invest. 124, 3032–3046 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, M. et al. Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell 28, 112–126.e6 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Burns, T. C., Li, M. D., Mehta, S., Awad, A. J. & Morgan, A. A. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: a systematic bioinformatics-based critique of preclinical models. Eur. J. Pharm. 759, 101–117 (2015).

    Article 

    Google Scholar
     

  • Bolognin, S. et al. 3D cultures of Parkinson’s disease-specific dopaminergic neurons for high content phenotyping and drug testing. Adv. Sci. 6, 1800927 (2019).

    Article 

    Google Scholar
     

  • Klima, S. et al. A human stem cell-derived test system for agents modifying neuronal N-methyl-D-aspartate-type glutamate receptor Ca2+-signalling. Arch. Toxicol. 95, 1703–1722 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanetti, C. et al. Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson’s disease modelling and drug screening. Analyst 146, 2358–2367 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S. W. et al. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease: midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment. Prog. Neurobiol. 204, 102086 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, H.-K. et al. Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS ONE 11, e0163072 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Y. et al. Modeling neurodegenerative microenvironment using cortical organoids derived from human stem cells. Tissue Eng. Part A 24, 1125–1137 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osaki, T., Uzel, S. G. M. & Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci. Adv. 4, eaat5847 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conforti, P. et al. Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc. Natl Acad. Sci. USA 115, E762–E771 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hor, J. H. et al. Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death Dis. 9, 1100 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senkevich, K. & Gan-Or, Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics. Parkinsonism Relat. Disord. 73, 60–71 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Balestrino, R. & Schapira, A. H. V. Parkinson disease. Eur. J. Neurol. 27, 27–42 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hogberg, H. T. et al. Toward a 3D model of human brain development for studying gene/environment interactions. Stem Cell Res Ther. 4(Suppl 1), S4 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Fujioka, S. et al. Update on novel familial forms of Parkinson’s disease and multiple system atrophy. Parkinsonism Relat. Disord. 20(Suppl 1), S29–S34 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasten, M. & Klein, C. The many faces of α-synuclein mutations. Mov. Disord. 28, 697–701 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Krüger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Lesage, S. et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zarranz, J. J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Chartier-Harlin, M.-C. et al. Α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364, 1167–1169 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Farrer, M. et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann. Neurol. 55, 174–179 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Nishioka, K. et al. Clinical heterogeneity of α-synuclein gene duplication in Parkinson’s disease. Ann. Neurol. 59, 298–309 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ibáñez, P. et al. Causal relation between α-synuclein gene duplication and familial Parkinson’s disease. Lancet 364, 1169–1171 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Muenter, M. D. et al. Hereditary form of parkinsonism-dementia. Ann. Neurol. 43, 768–781 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Book, A. et al. A meta-analysis of α-synuclein multiplication in familial parkinsonism. Front. Neurol. 9, 1021 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delenclos, M. et al. Cellular models of α-synuclein toxicity and aggregation. J. Neurochem. 150, 566–576 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, J. et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann. Neurol. 90, 490–505 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed, N.-V. et al. Midbrain organoids with an SNCA gene triplication model key features of synucleinopathy. Brain Commun. 3, fcab223 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becerra-Calixto, A. et al. Lewy body-like pathology and loss of dopaminergic neurons in midbrain organoids derived from familial Parkinson’s disease patient. Cells 12, 625 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muwanigwa, M. N. et al. Α-synuclein pathology is associated with astrocyte senescence in a midbrain organoid model of familial Parkinson’s disease. Mol. Cell Neurosci. 128, 103919 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Di Fonzo, A. et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet 365, 412–415 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Daher, J. P. L. et al. Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. J. Biol. Chem. 290, 19433–19444 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, C.-H. et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19, 709–724 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, X. et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant α-synuclein. Neuron 64, 807–827 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzoni, C. & Lewis, P. A. Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies. FASEB J. 27, 3424–3429 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chesselet, M.-F., Fleming, S., Mortazavi, F. & Meurers, B. Strengths and limitations of genetic mouse models of Parkinson’s disease. Parkinsonism Relat. Disord. 14(Suppl 2), S84–S87 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giasson, B. I. et al. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34, 521–533 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, M. K. et al. Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 -> Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc. Natl Acad. Sci. USA 99, 8968–8973 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Beal, M. F. Experimental models of Parkinson’s disease. Nat. Rev. Neurosci. 2, 325–334 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kluss, J. H., Mamais, A. & Cookson, M. R. LRRK2 links genetic and sporadic Parkinson’s disease. Biochem. Soc. Trans. 47, 651–661 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smits, L. M. et al. Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinsons Dis. 5, 5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, C.-J. et al. Thioredoxin-interacting protein induced α-synuclein accumulation via inhibition of autophagic flux: Implications for Parkinson’s disease. CNS Neurosci. Ther. 23, 717–723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zagare, A. et al. Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression. Am. J. Hum. Genet. 109, 311–327 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Gandhi, S. et al. PINK1 protein in normal human brain and Parkinson’s disease. Brain 129, 1720–1731 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Hoepken, H.-H. et al. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis. 25, 401–411 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Deas, E. et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20, 867–879 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Okatsu, K. et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Matsuda, S., Kitagishi, Y. & Kobayashi, M. Function and characteristics of PINK1 in mitochondria. Oxid. Med. Cell Longev. 2013, 601587 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. TRAP1 rescues PINK1 loss-of-function phenotypes. Hum. Mol. Genet. 22, 2829–2841 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flinn, L. J. et al. TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Ann. Neurol. 74, 837–847 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, J. et al. Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome-autophagy pathway during proteasomal stress. Autophagy 12, 632–647 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldeeb, M. A. et al. Tom20 gates PINK1 activity and mediates its tethering of the TOM and TIM23 translocases upon mitochondrial stress. Proc. Natl Acad. Sci. USA 121, e2313540121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, S. J. et al. PINK1 deficiency impairs adult neurogenesis of dopaminergic neurons. Sci. Rep. 11, 6617 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, E., Seehra, G., Sharma, P. & Sidransky, E. GBA1-associated parkinsonism: new insights and therapeutic opportunities. Curr. Opin. Neurol. 32, 589–596 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Do, J., Perez, G., Berhe, B., Tayebi, N. & Sidransky, E. Behavioral phenotyping in a murine model of GBA1-associated Parkinson disease. Int. J. Mol. Sci. 22, 6826 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae, E.-J. et al. Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation. Exp. Mol. Med. 47, e153 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abeliovich, A., Hefti, F. & Sevigny, J. Gene therapy for Parkinson’s disease associated with GBA1 mutations. J. Parkinsons Dis. 11, S183–S188 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baden, P. et al. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism. Nat. Commun. 14, 1930 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosety, I. et al. Impaired neuron differentiation in GBA-associated Parkinson’s disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis. 9, 166 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ungewickell, E. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632–635 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Edvardson, S. et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE 7, e36458 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köroğlu, Ç., Baysal, L., Cetinkaya, M., Karasoy, H. & Tolun, A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat. Disord. 19, 320–324 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Olgiati, S. et al. DNAJC6 mutations associated with early-onset Parkinson’s disease. Ann. Neurol. 79, 244–256 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wulansari, N. et al. Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations. Sci. Adv. 7, eabb1540 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, C. & Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahfeldt, T. et al. Pathogenic pathways in early-onset autosomal recessive Parkinson’s disease discovered using isogenic human dopaminergic neurons. Stem Cell Rep. 14, 75–90 (2020).

    Article 

    Google Scholar
     

  • Morrone Parfitt, G. et al. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson’s disease model. Nat. Commun. 15, 447 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Molecular profiling of human substantia nigra identifies diverse neuron types associated with vulnerability in Parkinson’s disease. Sci. Adv. 10, eadi8287 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monzel, A. S. et al. Machine learning-assisted neurotoxicity prediction in human midbrain organoids. Parkinsonism Relat. Disord. 75, 105–109 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schober, A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 318, 215–224 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Meredith, G. E. & Rademacher, D. J. MPTP mouse models of Parkinson’s disease: an update. J. Parkinsons Dis. 1, 19–33 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeyne, R. J. & Jackson-Lewis, V. The MPTP model of Parkinson’s disease. Brain Res. Mol. Brain Res. 134, 57–66 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Schulz, J. B., Matthews, R. T., Muqit, M. M., Browne, S. E. & Beal, M. F. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J. Neurochem. 64, 936–939 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Houlden, H. & Singleton, A. B. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol. 124, 325–338 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, S. Y.-Y. et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl. Neurodegener. 8, 23 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logroscino, G. The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ. Health Perspect. 113, 1234–1238 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, H., Abushouk, A. I., Gabr, M., Negida, A. & Abdel-Daim, M. M. Parkinson’s disease and pesticides: a meta-analysis of disease connection and genetic alterations. Biomed. Pharmacother. 90, 638–649 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cannon, J. R. & Greenamyre, J. T. Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol. Dis. 57, 38–46 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • Tetrud, J. W., Langston, J. W., Garbe, P. L. & Ruttenber, A. J. Mild parkinsonism in persons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurology 39, 1483–1487 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, T. P., Rumsby, P. C., Capleton, A. C., Rushton, L. & Levy, L. S. Pesticides and Parkinson’s disease-is there a link? Environ. Health Perspect. 114, 156–164 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Rascol, O., Fabbri, M. & Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 20, 1048–1056 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Calabresi, P., Di Filippo, M., Ghiglieri, V., Tambasco, N. & Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 9, 1106–1117 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Stephen, P. J. & Williamson, J. Drug-induced parkinsonism in the elderly. Lancet 2, 1082–1083 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, Y. et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24, 487–497.e7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zafeiriou, M.-P. et al. Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nat. Commun. 11, 3791 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenner, P. & Olanow, C. W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47, S161–S170 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Pamies, D. et al. Human IPSC 3D brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol. Dis. 169, 105719 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renner, H. et al. Cell-type-specific high throughput toxicity testing in human midbrain organoids. Front. Mol. Neurosci. 14, 715054 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorgau, B. et al. Human retinal organoids provide a suitable tool for toxicological investigations: a comprehensive validation using drugs and compounds affecting the retina. Stem Cells Transl. Med. 11, 159–177 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzenschlager, R. & Lees, A. J. Treatment of Parkinson’s disease: levodopa as the first choice. J. Neurol. 249(Suppl 2), II19–II24 (2002).

    PubMed 

    Google Scholar
     

  • Bronstein, J. M. et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68, 165 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Faggiani, E. & Benazzouz, A. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: from history to the interaction with the monoaminergic systems. Prog. Neurobiol. 151, 139–156 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, M. S., Kim, H. & Lee, G. Precision medicine in Parkinson’s disease using induced pluripotent stem cells. Adv. Healthc. Mater. e2303041 https://doi.org/10.1002/adhm.202303041 (2024).

  • Adler, A. F. et al. hESC-derived dopaminergic transplants integrate into basal ganglia circuitry in a preclinical model of Parkinson’s disease. Cell Rep. 28, 3462–3473.e5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiorenzano, A. et al. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat. Commun. 12, 7302 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birtele, M. et al. Single-cell transcriptional and functional analysis of dopaminergic neurons in organoid-like cultures derived from human fetal midbrain. Development 149, dev200504 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devine, M. J. et al. Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat. Commun. 2, 440 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson’s disease. Theranostics 13, 2673–2692 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarazo, J. et al. Parkinson’s disease phenotypes in patient neuronal cultures and brain organoids improved by 2-hydroxypropyl-β-cyclodextrin treatment. Mov. Disord. 37, 80–94 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, M. S. et al. Advanced human iPSC-based preclinical model for Parkinson’s disease with optogenetic α-synuclein aggregation. Cell Stem Cell 30, 973–986.e11 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, M. et al. Human motor system-based biohybrid robot-on-a-chip for drug evaluation of neurodegenerative disease. Adv. Sci. 11, e2305371 (2024).

    Article 

    Google Scholar
     

  • Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 13, 577–587 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gribkoff, V. K. & Kaczmarek, L. K. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120, 11–19 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Swalley, S. E. Expanding therapeutic opportunities for neurodegenerative diseases: a perspective on the important role of phenotypic screening. Bioorg. Med. Chem. 28, 115239 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Friese, A. et al. The convergence of stem cell technologies and phenotypic drug discovery. Cell Chem. Biol. 26, 1050–1066 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Boussaad, I. et al. Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening. Sci. Rep. 11, 1439 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimann, M. & Graf-Hausner, U. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23, 803–809 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug Dev. Technol. 12, 207–218 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montanez-Sauri, S. I., Beebe, D. J. & Sung, K. E. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges. Cell Mol. Life Sci. 72, 237–249 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Grenier, K., Kao, J. & Diamandis, P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Mol. Psychiatry 25, 254–274 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Babu, H. W. S., Kumar, S. M., Kaur, H., Iyer, M. & Vellingiri, B. Midbrain organoids for Parkinson’s disease (PD)—a powerful tool to understand the disease pathogenesis. Life Sci. 345, 122610 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kortekaas, R. et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • de Rus Jacquet, A. et al. The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease. Nat. Commun. 14, 3651 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, L. & Jiang, C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm. Sin. B 11, 2306–2325 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daviaud, N., Friedel, R. H. & Zou, H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex. eNeuro 5, ENEURO.0219-18.2018 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dao, L. et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 31, 818–833.e11 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ao, Z. et al. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal. Chem. 92, 4630–4638 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sabate-Soler, S. et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia 70, 1267–1288 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Bakker, A. D., Klein-Nulend, J. & Bravenboer, N. Studies on osteocytes in their 3D native matrix versus 2D in vitro models. Curr. Osteoporos. Rep. 17, 207–216 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pais, A. S. et al. The challenge of ovarian tissue culture: 2D versus 3D culture. J. Ovarian Res. 14, 147 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marín, O., Yaron, A., Bagri, A., Tessier-Lavigne, M. & Rubenstein, J. L. Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293, 872–875 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Kwan, K. Y., Sestan, N. & Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535–1546 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clowry, G. J. et al. Charting the protomap of the human telencephalon. Semin Cell Dev. Biol. 76, 3–14 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Molnár, Z. et al. New insights into the development of the human cerebral cortex. J. Anat. 235, 432–451 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Bendito, G. & Molnár, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Renner, M. et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Muguruma, K. et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat. Neurosci. 13, 1171–1180 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marton, R. M. & Pașca, S. P. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 30, 133–143 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Qian, X. et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat. Protoc. 13, 565–580 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, X. et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. Mol. Psychiatry 26, 2964–2976 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Moriarty, N. et al. A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 29, 434–448.e5 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shrigley, S. et al. Grafts derived from an α-synuclein triplication patient mediate functional recovery but develop disease-associated pathology in the 6-OHDA model of Parkinson’s disease. J. Parkinsons Dis. 11, 515–528 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiaradia, I. et al. Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell 30, 1351–1367.e10 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Y. et al. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 31, 260–274.e7 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Geng, L. et al. MLKL deficiency alleviates neuroinflammation and motor deficits in the α-synuclein transgenic mouse model of Parkinson’s disease. Mol. Neurodegener. 18, 94 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendriks, D. et al. Human fetal brain self-organizes into long-term expanding organoids. Cell 187, 712–732.e38 (2024).

    Article 
    PubMed 

    Google Scholar