Hippocampal neurogenesis in adult primates: a systematic review

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7. http://www.nature.com/articles/nm1198_1313.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gould E, Vail N, Wagers M, Gross CG. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA. 2001;98:10910–7. https://pnas.org/doi/full/10.1073/pnas.181354698.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA. 1999;96:5263–7. https://pnas.org/doi/full/10.1073/pnas.96.9.5263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruglyakova EP, Khovryakov AV, Shikhanov NP, MacCann GM, Vael’ I, Kruglyakov PP, et al. Nestin-expressing cells in the human hippocampus. Neurosci Behav Physiol. 2005;35:891–7. http://link.springer.com/10.1007/s11055-005-0141-y.

  • Kuhn H, Dickinson-Anson H, Gage F. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knowles WD. Normal anatomy and neurophysiology of the hippocampal formation. J Clin Neurophysiol. 1992;9:252–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphrey T. The development of the human hippocampal fissure. J Anat. 1967;101:655–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amrein I, Nosswitz M, Slomianka L, van Dijk RM, Engler S, Klaus F, et al. Septo-temporal distribution and lineage progression of hippocampal neurogenesis in a primate (Callithrix jacchus) in comparison to mice. Front Neuroanat. 2015;9:85. http://journal.frontiersin.org/Article/10.3389/fnana.2015.00085/abstract.

  • Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3. https://www.science.org/doi/10.1126/science.1173215.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:7344. https://www.nature.com/articles/nature09817.

    Article 

    Google Scholar
     

  • Lemaire V, Aurousseau C, Le Moal M, Abrous DN. Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur J Neurosci. 1999;11:4006–14. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1460-9568.1999.00833.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci. 2006;9:6 https://www.nature.com/articles/nn1707.

    Article 

    Google Scholar
     

  • Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, et al. Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE. 2008;3:e1959. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001959.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garthe A, Roeder I, Kempermann G. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus. 2016;26:261–71. https://onlinelibrary.wiley.com/doi/full/10.1002/hipo.22520.

    Article 
    PubMed 

    Google Scholar
     

  • Kheirbek MA, Klemenhagen KC, Sahay A, Hen R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci. 2012;15:12. https://www.nature.com/articles/nn.3262.

    Article 

    Google Scholar
     

  • Ally BA, Hussey EP, Ko PC, Molitor RJ. Pattern separation and pattern completion in Alzheimer’s disease: evidence of rapid forgetting in amnestic mild cognitive impairment. Hippocampus. 2013;23:1246.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wesnes KA, Annas P, Basun H, Edgar C, Blennow K. Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein e 4 status and cerebrospinal fluid amyloid-β42 levels. Alzheimers Res Ther. 2014;6:1–8. https://alzres.biomedcentral.com/articles/10.1186/alzrt250.

    Article 
    CAS 

    Google Scholar
     

  • Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49:1–52. https://pubmed.ncbi.nlm.nih.gov/11343862/.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci. 1998;1:4. https://www.nature.com/articles/nn0898_318.

    Article 

    Google Scholar
     

  • Weiss AP, Schacter DL, Goff DC, Rauch SL, Alpert NM, Fischman AJ, et al. Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry. 2003;53:48–55. https://pubmed.ncbi.nlm.nih.gov/12513944/.

    Article 
    PubMed 

    Google Scholar
     

  • Kempermann G, Kronenberg G. Depressed new neurons—adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry. 2003;54:499–503. http://www.biologicalpsychiatryjournal.com/article/S0006322303003196/fulltext.

    Article 
    PubMed 

    Google Scholar
     

  • Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry. 2001;178:200–6. https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/cognitive-deficits-in-depression-possible-implications-for-functional-neuropathology/0A1F8438C8C0CA446BE9B19495026523.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry. 2000;47:1043–9. https://pubmed.ncbi.nlm.nih.gov/10862803/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott BW, Wojtowicz JM, Burnham WMI. Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol. 2000;165:231–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104.

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9. https://www.science.org/doi/10.1126/science.1083328.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochem. 2000;75:1729–34. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.2000.0751729.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duque A, Spector R. A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct. 2019;224:2281.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–81. http://www.nature.com/articles/nature25975.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cipriani S, Ferrer I, Aronica E, Kovacs GG, Verney C, Nardelli J, et al. Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults. Cereb Cortex. 2018;28:2458–78. https://academic.oup.com/cercor/article/28/7/2458/4990939.

    Article 
    PubMed 

    Google Scholar
     

  • Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42:621–38. https://onlinelibrary.wiley.com/doi/10.1111/nan.12337.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60. http://www.nature.com/articles/s41591-019-0375-9.

    Article 
    PubMed 

    Google Scholar
     

  • Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell. 2018;23:25–30. http://www.cell.com/article/S1934590918301668/fulltext.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tartt AN, Fulmore CA, Liu Y, Rosoklija GB, Dwork AJ, Arango V, et al. Considerations for assessing the extent of hippocampal neurogenesis in the adult and aging human brain. Cell Stem Cell. 2018;23:782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee H, Thuret S. Adult human hippocampal neurogenesis: controversy and evidence. Trends Mol Med. 2018;24:521–2.

    Article 
    PubMed 

    Google Scholar
     

  • Oppenheim RW. Adult hippocampal neurogenesis in mammals (and humans): the death of a central dogma in neuroscience and its replacement by a new dogma. Dev Neurobiol. 2019;79:268–80. https://onlinelibrary.wiley.com/doi/full/10.1002/dneu.22674.

    Article 
    PubMed 

    Google Scholar
     

  • Seki T. Understanding the real state of human adult hippocampal neurogenesis from studies of rodents and non-human primates. Front Neurosci. 2020;14:570468.

    Article 

    Google Scholar
     

  • Moreno-Jiménez EP, Terreros-Roncal J, Flor-García M, Rábano A, Llorens-Martín M. Evidences for adult hippocampal neurogenesis in humans. J Neurosci. 2021;41:2541–53. https://www.jneurosci.org/content/41/12/2541.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tardif S, Carville A, Elmore D, Williams LE, Rice K. Reproduction and breeding of nonhuman primates. In: Abee CR, Mansfield K, Tardif S, Morris T (eds) Nonhuman primates in biomedical research. Cambridge, Massachusetts: Academic Press; 2012. pp. 197–249.

  • Wu MV, Shamy JL, Bedi G, Choi CWJ, Wall MM, Arango V, et al. Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus. Neuropsychopharmacology. 2014;39:1861–71. http://www.nature.com/articles/npp201433.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • del Rio JA, Soriano E. Immunocytochemical detection of 5′-bromodeoxyuridine incorporation in the central nervous system of the mouse. Dev Brain Res. 1989;49:311–7.

    Article 

    Google Scholar
     

  • Yamashima T, Tonchev AB, Vachkov IH, Popivanova BK, Seki T, Sawamoto K, et al. Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia. Hippocampus. 2004;14:861–75. https://onlinelibrary.wiley.com/doi/10.1002/hipo.20001.

    Article 
    PubMed 

    Google Scholar
     

  • Tonchev AB, Yamashima T. Differential neurogenic potential of progenitor cells in dentate gyrus and CA1 sector of the postischemic adult monkey hippocampus. Exp Neurol [Internet]. 2006;198:101–13. https://linkinghub.elsevier.com/retrieve/pii/S0014488605004188.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA. 1999;96:5768–73. https://pnas.org/doi/full/10.1073/pnas.96.10.5768.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kordower JH, Chen EY, Morrison JH. Long-term gonadal hormone treatment and endogenous neurogenesis in the dentate gyrus of the adult female monkey. Exp Neurol. 2010;224:252–7. https://linkinghub.elsevier.com/retrieve/pii/S0014488610001135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT. Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc Natl Acad Sci USA. 2011;108:10326–31. https://pnas.org/doi/full/10.1073/pnas.1017099108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen KM, Fung SJ, Rothmond DA, Noble PL, Shannon Weickert C. Gonadectomy increases neurogenesis in the male adolescent rhesus macaque hippocampus. Hippocampus. 2014;24:225–38. https://onlinelibrary.wiley.com/doi/10.1002/hipo.22217.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev. 2007;53:198–214.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngwenya LB, Heyworth NC, Shwe Y, Moore TL, Rosene DL. Age-related changes in dentate gyrus cell numbers, neurogenesis, and associations with cognitive impairments in the rhesus monkey. Front Syst Neurosci. 2015;9:102. http://journal.frontiersin.org/Article/10.3389/fnsys.2015.00102/abstract.

  • Kaneko N, Nakamura S, Sawamoto K. Effects of interferon-alpha on hippocampal neurogenesis and behavior in common marmosets. Mol Brain. 2020;13:98. https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-020-00639-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marlatt MW, Philippens I, Manders E, Czéh B, Joels M, Krugers H, et al. Distinct structural plasticity in the hippocampus and amygdala of the middle-aged common marmoset (Callithrix jacchus). Exp Neurol. 2011;230:291–301. https://linkinghub.elsevier.com/retrieve/pii/S0014488611001750.

    Article 
    PubMed 

    Google Scholar
     

  • Bunk EC, Stelzer S, Hermann S, Schäfers M, Schlatt S, Schwamborn JC. Cellular organization of adult neurogenesis in the Common Marmoset. Aging Cell. 2011;10:28–38. https://onlinelibrary.wiley.com/doi/10.1111/j.1474-9726.2010.00639.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perera TD, Lu D, Thirumangalakudi L, Smith ELP, Yaretskiy A, Rosenblum LA, et al. Correlations between hippocampal neurogenesis and metabolic indices in adult nonhuman primates. Neural Plast. 2011;2011:1–6. http://www.hindawi.com/journals/np/2011/875307/.

    Article 
    PubMed 

    Google Scholar
     

  • Perera TD, Dwork AJ, Keegan KA, Thirumangalakudi L, Lipira CM, Joyce N, et al. Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS ONE. 2011;6:e17600. https://dx.plos.org/10.1371/journal.pone.0017600.

  • Koketsu D, Furuichi Y, Maeda M, Matsuoka N, Miyamoto Y, Hisatsune T. Increased number of new neurons in the olfactory bulb and hippocampus of adult non-human primates after focal ischemia. Exp Neurol. 2006;199:92–102. https://linkinghub.elsevier.com/retrieve/pii/S0014488606001968.

    Article 
    PubMed 

    Google Scholar
     

  • Tonchev AB, Yamashima T, Zhao L, Okano HJ, Okano H. Proliferation of neural and neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci. 2003;23:292–301. https://linkinghub.elsevier.com/retrieve/pii/S1044743103000587.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngwenya LB, Rosene DL, Peters A. An ultrastructural characterization of the newly generated cells in the adult monkey dentate gyrus. Hippocampus. 2008;18:210–20. https://onlinelibrary.wiley.com/doi/10.1002/hipo.20384.

    Article 
    PubMed 

    Google Scholar
     

  • Berg DA, Bond AM, Ming GL, Song H. Radial glial cells in the adult dentate gyrus: what are they and where do they come from? F1000Res. 2018;7:277.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leuner B, Kozorovitskiy Y, Gross CG, Gould E. Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA. 2007;104:17169–73. https://pnas.org/doi/full/10.1073/pnas.0708228104.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, et al. NG2 + /Olig2 + cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 2010;20:399–411. https://onlinelibrary.wiley.com/doi/10.1111/j.1750-3639.2009.00295.x.

    Article 
    PubMed 

    Google Scholar
     

  • Le Maître TW, Dhanabalan G, Bogdanovic N, Alkass K, Druid H. Effects of alcohol abuse on proliferating cells, stem/progenitor cells, and immature neurons in the adult human hippocampus. Neuropsychopharmacology. 2018;43:690–9. http://www.nature.com/articles/npp2017251.

    Article 
    PubMed 

    Google Scholar
     

  • Galán L, Gómez-Pinedo U, Guerrero A, García-Verdugo JM, Matías-Guiu J. Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches. BMC Neurol. 2017;17:173. http://bmcneurol.biomedcentral.com/articles/10.1186/s12883-017-0956-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Pinedo U, Galán L, Matías-Guiu JA, Pytel V, Moreno T, Guerrero-Sola A, et al. Notch signalling in the hippocampus of patients with motor neuron disease. Front Neurosci. 2019;13:302. https://www.frontiersin.org/article/10.3389/fnins.2019.00302/full.

  • Sgubin D, Aztiria E, Perin A, Longatti P, Leanza G. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J Neurosci Res. 2007;85:1647–55. https://onlinelibrary.wiley.com/doi/10.1002/jnr.21303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seki T, Hori T, Miyata H, Maehara M, Namba T. Analysis of proliferating neuronal progenitors and immature neurons in the human hippocampus surgically removed from control and epileptic patients. Sci Rep. 2019;9:18194. http://www.nature.com/articles/s41598-019-54684-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry. 2012;72:562–71. https://linkinghub.elsevier.com/retrieve/pii/S0006322312004015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ammothumkandy A, Ravina K, Wolseley V, Tartt AN, Yu PN, Corona L, et al. Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat Neurosci. 2022;25:493–503. https://www.nature.com/articles/s41593-022-01044-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell. 2019;24:974–82.e3. https://linkinghub.elsevier.com/retrieve/pii/S1934590919302073.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22:589–99.e5. https://linkinghub.elsevier.com/retrieve/pii/S1934590918301218.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology. 2009;34:2376–89. http://www.nature.com/articles/npp200975.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XM. Doublecortin-expressing cells persist in the associate cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat. 2009;3:17. http://journal.frontiersin.org/article/10.3389/neuro.05.017.2009/abstract.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayer R, Franke H, Ficker C, Richter M, Lessig R, Büttner A, et al. Alterations of neuronal precursor cells in stages of human adult neurogenesis in heroin addicts. Drug Alcohol Depend. 2015;156:139–49. https://linkinghub.elsevier.com/retrieve/pii/S0376871615016476.

    Article 
    PubMed 

    Google Scholar
     

  • Oreja-Guevara C, Gómez-Pinedo U, García-López J, Sánchez-Sánchez R, Valverde-Moyano R, Rabano-Gutierrez A, et al. Inhibition of neurogenesis in a case of Marburg variant multiple sclerosis. Mult Scler Relat Disord. 2017;18:71–6. https://linkinghub.elsevier.com/retrieve/pii/S2211034817302262.

    Article 
    PubMed 

    Google Scholar
     

  • Cogle CR, Yachnis AT, Laywell ED, Zander DS, Wingard JR, Steindler DA, et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet. 2004;363:1432–7. https://linkinghub.elsevier.com/retrieve/pii/S0140673604161023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckenhoff M, Rakic P. Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J Neurosci. 1988;8:2729–47. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.08-08-02729.1988.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fahrner A, Kann G, Flubacher A, Heinrich C, Freiman TM, Zentner J, et al. Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Exp Neurol. 2007;203:320–32. https://linkinghub.elsevier.com/retrieve/pii/S0014488606004833.

    Article 
    PubMed 

    Google Scholar
     

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27. https://linkinghub.elsevier.com/retrieve/pii/S0092867413005333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science. 2007;318:980–5. https://www.science.org/doi/10.1126/science.1147851.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen A, Magnusson P, Hanson LG, Kirkegaard T, Benveniste H, Lee H, et al. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr Scand. 2016;133:154–64. https://onlinelibrary.wiley.com/doi/10.1111/acps.12462.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu YWJ, Curtis MA, Gibbons HM, Mee EW, Bergin PS, Teoh HH, et al. Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci. 2008;28:2254–65. https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2008.06518.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, et al. Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis. 2005;19:436–50. https://linkinghub.elsevier.com/retrieve/pii/S0969996105000355.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirttilä TJ, Manninen A, Jutila L, Nissinen J, Kälviäinen R, Vapalahti M, et al. Cystatin C expression is associated with granule cell dispersion in epilepsy. Ann Neurol. 2005;58:211–23. https://onlinelibrary.wiley.com/doi/10.1002/ana.20545.

    Article 
    PubMed 

    Google Scholar
     

  • Pajkert A, Ploner CJ, Lehmann TN, Witte VA, Oltmanns F, Sommer W, et al. Early volumetric changes of hippocampus and medial prefrontal cortex following medial temporal lobe resection. Eur J Neurosci. 2020;52:4375–84. https://onlinelibrary.wiley.com/doi/10.1111/ejn.14784.

    Article 
    PubMed 

    Google Scholar
     

  • Walgrave H, Balusu S, Snoeck S, Vanden Eynden E, Craessaerts K, Thrupp N, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell. 2021;28:1805–21.e8. https://linkinghub.elsevier.com/retrieve/pii/S1934590921002198.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekonomou A, Savva GM, Brayne C, Forster G, Francis PT, Johnson M, et al. Stage-specific changes in neurogenic and glial markers in Alzheimer’s disease. Biol Psychiatry. 2015;77:711–9. https://linkinghub.elsevier.com/retrieve/pii/S0006322314004120.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Briley D, Ghirardi V, Woltjer R, Renck A, Zolochevska O, Taglialatela G, et al. Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci Rep. 2016;6:27812. https://www.nature.com/articles/srep27812.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101:343–7. https://pnas.org/doi/full/10.1073/pnas.2634794100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J. Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis. 2012;47:155–62. https://linkinghub.elsevier.com/retrieve/pii/S0969996112001222.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terreros-Roncal J, Moreno-Jiménez EP, Flor-García M, Rodríguez-Moreno CB, Trinchero MF, Cafini F, et al. Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science. 2021;374:1106–13. https://www.science.org/doi/10.1126/science.abl5163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatt A, Ekonomou A, Somani A, Thuret S, Howlett D, Corbett A, et al. Importance of proactive treatment of depression in Lewy Body dementias: the impact on hippocampal neurogenesis and cognition in a post-mortem study. Dement Geriatr Cogn Disord. 2017;44:283–93. https://www.karger.com/Article/FullText/484437.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stępień T, Tarka S, Chutorański D, Felczak P, Acewicz A, Wierzba-Bobrowicz T. Neurogenesis in adult human brain after hemorrhage and ischemic stroke. Folia Neuropathol. 2018;56:293–300. https://www.termedia.pl/doi/10.5114/fn.2018.80862.

    Article 
    PubMed 

    Google Scholar
     

  • Gerber J, Tauber SC, Armbrecht I, Schmidt H, Bruck W, Nau R. Increased neuronal proliferation in human bacterial meningitis. Neurology. 2009;73:1026–32. https://www.neurology.org/lookup/doi/10.1212/WNL.0b013e3181b9c892.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boneva NB, Yamashima T. New insights into “GPR40-CREB interaction inadult neurogenesis” specific for primates. Hippocampus. 2012;22:896–905. https://onlinelibrary.wiley.com/doi/10.1002/hipo.20951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayat AH, Azimi H, Hassani Moghaddam M, Ebrahimi V, Fathi M, Vakili K, et al. COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus. Apoptosis. 2022;27:852–68. https://link.springer.com/10.1007/s10495-022-01754-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soung AL, Vanderheiden A, Nordvig AS, Sissoko CA, Canoll P, Mariani MB, et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain. 2022;145:4193–201. https://academic.oup.com/brain/article/145/12/4193/6672950.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epp JR, Beasley CL, Galea LA. Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure. Neuropsychopharmacology. 2013;38:2297–306. http://www.nature.com/articles/npp2013132.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walton NM, Zhou Y, Kogan JH, Shin R, Webster M, Gross AK, et al. Detection of an immature dentate gyrus feature in human schizophrenia/bipolar patients. Transl Psychiatry. 2012;2:e135. http://www.nature.com/articles/tp201256.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11:514–22. https://www.nature.com/articles/4001791.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucassen PJ, Stumpel MW, Wang Q, Aronica E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology. 2010;58:940–9. https://linkinghub.elsevier.com/retrieve/pii/S0028390810000262.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen KM, Fung SJ, Shannon Weickert C. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust NZ J Psychiatry. 2016;50:473–80. http://journals.sagepub.com/doi/10.1177/0004867415589793.

    Article 

    Google Scholar
     

  • Ohira K, Hagihara H, Miwa M, Nakamura K, Miyakawa T. Fluoxetine-induced dematuration of hippocampal neurons and adult cortical neurogenesis in the common marmoset. Mol Brain. 2019;12:69. https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-019-0489-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry. 2003;54:693–702. https://linkinghub.elsevier.com/retrieve/pii/S0006322303006346.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai HH, Cha J, Vedaei F, Dunlop BW, Craighead WE, Mayberg HS, et al. Treatment-specific hippocampal subfield volume changes with antidepressant medication or cognitive-behavior therapy in treatment-naive depression. Front Psychiatry. 2021;12:718539. https://www.frontiersin.org/articles/10.3389/fpsyt.2021.718539/full.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, et al. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci. 2007;27:4894–901. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0237-07.2007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuninga JO, Mandl RCW, Boks MP, Bakker S, Somers M, Heringa SM, et al. Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7 T. Mol Psychiatry. 2019;25:1559–68. http://www.nature.com/articles/s41380-019-0392-6.

    Article 
    PubMed 

    Google Scholar
     

  • Cao B, Luo Q, Fu Y, Du L, Qiu T, Yang X, et al. Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Sci Rep. 2018;8:5434. https://www.nature.com/articles/s41598-018-23685-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, et al. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry. 2016;79:282–92. https://linkinghub.elsevier.com/retrieve/pii/S0006322315001547.

    Article 
    PubMed 

    Google Scholar
     

  • Tendolkar I, van Beek M, van Oostrom I, Mulder M, Janzing J, Voshaar RO, et al. Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression: a longitudinal pilot study. Psychiatry Res Neuroimaging. 2013;214:197–203. https://linkinghub.elsevier.com/retrieve/pii/S0925492713002606.

    Article 

    Google Scholar
     

  • Yucel K, Taylor VH, McKinnon MC, MacDonald K, Alda M, Young LT, et al. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology. 2008;33:361–7. http://www.nature.com/articles/1301405.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE. 2010;5:e8809. https://dx.plos.org/10.1371/journal.pone.0008809.

  • Schoenfeld EM, Gupta NK, Syed SA, Rozenboym AV, Fulton SL, Jackowski AP, et al. Developmental antecedents of adult macaque neurogenesis: early-life adversity, 5-HTTLPR polymorphisms, and adolescent hippocampal volume. J Affect Disord. 2021;286:204–12. https://linkinghub.elsevier.com/retrieve/pii/S0165032721001865.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aizawa K, Ageyama N, Terao K, Hisatsune T. Primate-specific alterations in neural stem/progenitor cells in the aged hippocampus. Neurobiol Aging. 2011;32:140–50. https://linkinghub.elsevier.com/retrieve/pii/S0197458008004272.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattiesen WRC, Tauber SC, Gerber J, Bunkowski S, Brück W, Nau R. Increased neurogenesis after hypoxic-ischemic encephalopathy in humans is age related. Acta Neuropathol. 2009;117:525–34. http://link.springer.com/10.1007/s00401-009-0509-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coplan JD, Syed S, Perera TD, Fulton SL, Banerji MA, Dwork AJ, et al. Glucagon-like peptide-1 as predictor of body mass index and dentate gyrus neurogenesis: neuroplasticity and the metabolic milieu. Neural Plast. 2014;2014:1–10. http://www.hindawi.com/journals/np/2014/917981/.

    Article 

    Google Scholar
     

  • Lyons DM, Buckmaster PS, Lee AG, Wu C, Mitra R, Duffey LM, et al. Stress coping stimulates hippocampal neurogenesis in adult monkeys. Proc Natl Acad Sci USA. 2010;107:14823–7. https://pnas.org/doi/full/10.1073/pnas.0914568107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Joo E, Suh S, Kim JH, Kim ST, Hong SB. Effects of long-term treatment on brain volume in patients with obstructive sleep apnea syndrome. Hum Brain Mapp. 2016;37:395–409. https://onlinelibrary.wiley.com/doi/10.1002/hbm.23038.

    Article 
    PubMed 

    Google Scholar
     

  • Gbyl K, Rostrup E, Raghava JM, Andersen C, Rosenberg R, Larsson HBW, et al. Volume of hippocampal subregions and clinical improvement following electroconvulsive therapy in patients with depression. Prog Neuropsychopharmacol Biol Psychiatry. 2021;104:110048. https://linkinghub.elsevier.com/retrieve/pii/S027858462030364X.

    Article 
    PubMed 

    Google Scholar
     

  • Baeken C, Wu G, Sackeim HA. Accelerated iTBS treatment applied to the left DLPFC in depressed patients results in a rapid volume increase in the left hippocampal dentate gyrus, not driven by brain perfusion. Brain Stimul. 2020;13:1211–7. https://linkinghub.elsevier.com/retrieve/pii/S1935861X20301182.

    Article 
    PubMed 

    Google Scholar
     

  • Furtado CP, Hoy KE, Maller JJ, Savage G, Daskalakis ZJ, Fitzgerald PB. An investigation of medial temporal lobe changes and cognition following antidepressant response: a prospective rTMS study. Brain Stimul. 2013;6:346–54. https://linkinghub.elsevier.com/retrieve/pii/S1935861X12001106.

    Article 
    PubMed 

    Google Scholar
     

  • Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124:319–35. https://onlinelibrary.wiley.com/doi/full/10.1002/cne.901240303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaplan MS, Bell DH. Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci. 1984;4:1429.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RAR, Goldman SA. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex. 1994;4:576–89. https://pubmed.ncbi.nlm.nih.gov/7703685/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloch J, Kaeser M, Sadeghi Y, Rouiller EM, Redmond DE, Brunet JF. Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol. 2011;519:775–89. https://pubmed.ncbi.nlm.nih.gov/21246554/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jabès A, Lavenex PB, Amaral DG, Lavenex P. Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. Eur J Neurosci. 2010;31:273–85. https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2009.07061.x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83. http://www.cell.com/article/S0092867414001378/fulltext.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flor-García M, Terreros-Roncal J, Moreno-Jiménez EP, Ávila J, Rábano A, Llorens-Martín M. Unraveling human adult hippocampal neurogenesis. Nat Protoc. 2020;15:2. https://www.nature.com/articles/s41596-019-0267-y.

    Article 

    Google Scholar
     

  • Wang L, Swank JS, Glick IE, Gado MH, Miller MI, Morris JC, et al. Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging✩. Neuroimage 2003;20:667–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacobs BL, Van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry. 2000;5:3. https://www.nature.com/articles/4000712.

    Article 

    Google Scholar
     

  • Bauman MD, Schumann CM, Carlson EL, Taylor SL, Vázquez-Rosa E, Cintrón-Pérez CJ, et al. Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Transl Psychiatry. 2018;8:202. http://www.nature.com/articles/s41398-018-0244-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015;58:610–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou W, Ji Z, Chen Z, Wherry EJ, Hicks SC, Ji H. A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples. Nat Commun. 2023;14:1. https://www.nature.com/articles/s41467-023-42841-y.

    Article 

    Google Scholar
     

  • Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 2017;14:10. https://www.nature.com/articles/nmeth.4407.

    Article 

    Google Scholar
     

  • Zhou Y, Su Y, Li S, Kennedy BC, Zhang DY, Bond AM, et al. Molecular landscapes of human hippocampal immature neurons across lifespan. Nature. 2022;607:527–33. https://www.nature.com/articles/s41586-022-04912-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Wang M, Yang M, Zeng B, Qiu W, Ma Q, et al. Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Res. 2022;32:8. https://www.nature.com/articles/s41422-022-00678-y.

    Article 

    Google Scholar
     

  • Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron. 2022;110:452–69.e14. http://www.cell.com/article/S0896627321008667/fulltext.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayhan F, Kulkarni A, Berto S, Sivaprakasam K, Douglas C, Lega BC, et al. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron. 2021;109:2091–105.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell. 2021;12:695.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran MN, Maynard KR, Spangler A, Huuki LA, Montgomery KD, Sadashivaiah V, et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron. 2021;109:3088.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tosoni G, Ayyildiz D, Bryois J, Macnair W, Fitzsimons CP, Lucassen PJ, et al. Mapping human adult hippocampal neurogenesis with single-cell transcriptomics: reconciling controversy or fueling the debate? Neuron. 2023;111:1714–31.e3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalinina A, Lagace D. Single-cell and single-nucleus RNAseq analysis of adult neurogenesis. Cells. 2022;11:1633.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature. 2000;405:951–5. https://www.nature.com/articles/35016083.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467:1–10. https://onlinelibrary.wiley.com/doi/full/10.1002/cne.10874.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005;21:1–14. https://pubmed.ncbi.nlm.nih.gov/15654838/.

    Article 
    PubMed 

    Google Scholar
     

  • Wharton SB, Williams GH, Stoeber K, Gelsthorpe CH, Baxter L, Johnson AL, et al. Expression of Ki67, PCNA and the chromosome replication licensing protein Mcm2 in glial cells of the ageing human hippocampus increases with the burden of Alzheimer-type pathology. Neurosci Lett. 2005;383:33–8. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304394005003824.

  • Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31:13–20. https://pubmed.ncbi.nlm.nih.gov/6339421/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz EI, Smilenov LB, Price MA, Osredkar T, Baker RA, Ghosh S, et al. Cell cycle activation in postmitotic neurons is essential for DNA repair. Cell Cycle. 2007;6:318–29. https://pubmed.ncbi.nlm.nih.gov/17297309/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci. 2003;23:9357–66. https://pubmed.ncbi.nlm.nih.gov/14561863/.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lendahl U, Zimmerman LB, McKay RDG. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–95. https://linkinghub.elsevier.com/retrieve/pii/009286749090662X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salehi F, Kovacs K, Cusimano MD, Horvath E, Bell CD, Rotondo F, et al. Immunohistochemical expression of nestin in adenohypophysial vessels during development of pituitary infarction. J Neurosurg. 2008;108:118–23. https://pubmed.ncbi.nlm.nih.gov/18173320/.

    Article 
    PubMed 

    Google Scholar
     

  • Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, et al. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol. 2003;467:455–63. https://pubmed.ncbi.nlm.nih.gov/14624480/.

    Article 
    PubMed 

    Google Scholar
     

  • Seki T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res. 2002;70:327–34. https://pubmed.ncbi.nlm.nih.gov/12391592/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia ADR, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 2004;7:11. https://www.nature.com/articles/nn1340.

    Article 

    Google Scholar
     

  • Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39:749–65. http://www.cell.com/article/S0896627303004975/fulltext.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G. Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia. 2006;54:805–14.

    Article 
    PubMed 

    Google Scholar
     

  • Von Bohlen Und Halbach O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 2007;329:3. https://link.springer.com/article/10.1007/s00441-007-0432-4.

    Article 

    Google Scholar
     

  • Ambrogini P, Lattanzi D, Ciuffoli S, Agostini D, Bertini L, Stocchi V, et al. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res. 2004;1017:21–31. https://pubmed.ncbi.nlm.nih.gov/15261095/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129:665–79. http://www.cell.com/article/S0092867407005946/fulltext.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandyam CD, Harburg GC, Eisch AJ. Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience. 2007;146:108–22. https://pubmed.ncbi.nlm.nih.gov/17307295/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee KY, Myung K. PCNA modifications for regulation of post-replication repair pathways. Mol Cells. 2008;26:5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muskhelishvili L, Latendresse JR, Kodell RL, Henderson EB. Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. J Histochem Cytochem. 2003;51:1681–8. https://journals.sagepub.com/doi/full/10.1177/002215540305101212.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maslov AY, Barone TA, Plunkett RJ, Pruitt SC. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci. 2004;24:1726–33. https://pubmed.ncbi.nlm.nih.gov/14973255/.

  • Sakakibara SI, Nakamura Y, Satoh H, Okano H. RNA-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci. 2001;21:8091.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci. 2003;24:603–13. https://pubmed.ncbi.nlm.nih.gov/14664811/.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tóth K, Ero’ss L, Vajda J, Halász P, Freund TF, Maglóczky Z. Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain. 2010;133:2763.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar