Search
Close this search box.

High-throughput fabrication of antimicrobial phage microgels and example applications in food decontamination – Nature Protocols

  • The promise of phages. Nat. Biotechnol. 41, 583–583 (2023).

  • Souza, G. R. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang, C. Y. et al. Weaving genetically engineered functionality into mechanically robust virus fibers. Adv. Mater. 19, 826–832 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Chung, W. J. et al. Biomimetic self-templating supramolecular structures. Nature 478, 364–368 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Identification of highly selective covalent inhibitors by phage display. Nat. Biotechnol. 39, 490–498 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, L. et al. Bacteriophage‐built gels as platforms for biomedical applications. Can. J. Chem. Eng. 100, 2191–2203 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jackson, K., Peivandi, A., Fogal, M., Tian, L. & Hosseinidoust, Z. Filamentous phages as building blocks for bioactive hydrogels. ACS Appl. Bio. Mater. 4, 2262–2273 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13, 777–786 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antimicrobial resistanceWorld Health Organization http://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (2021).

  • Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, G. P., Petrenko, V. A. & Matthews, L. J. Cross-linked filamentous phage as an affinity matrix. J. Immunol. Methods 215, 151–161 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, S. M., Qi, J., Oh, D., Belcher, A. & Kong, J. M13 virus aerogels as a scaffold for functional inorganic materials. Adv. Funct. Mater. 27, 1603203 (2017).

    Article 

    Google Scholar
     

  • Peivandi, A., Tian, L., Mahabir, R. & Hosseinidoust, Z. Hierarchically structured, self-healing, fluorescent, bioactive hydrogels with self-organizing bundles of phage nanofilaments. Chem. Mater. 31, 5442–5449 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peivandi, A. et al. Inducing microscale structural order in phage nanofilament hydrogels with globular proteins. ACS Biomater. Sci. Eng. 8, 340–347 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. Y. et al. Assembly of viral hydrogels for three-dimensional conducting nanocomposites. Adv. Mater. 26, 5101–5107 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, J. W. et al. Biomimetic virus-based colourimetric sensors. Nat. Commun. 5, 3043 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ohmura, J. F. et al. Highly adjustable 3D nano-architectures and chemistries: via assembled 1D biological templates. Nanoscale 11, 1091–1101 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. H. et al. Production of tunable nanomaterials using hierarchically assembled bacteriophages. Nat. Protoc. 12, 1999–2013 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. H. et al. Phage-based structural color sensors and their pattern recognition sensing system. ACS Nano 11, 3632–3641 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L., Zhao, X., Lin, Y., Su, Z. & Wang, Q. Dual stimuli-responsive supramolecular hydrogel of bionanoparticles and hyaluronan. Polym. Chem. 5, 6754–6760 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sawada, T., Yanagimachi, M. & Serizawa, T. Controlled release of antibody proteins from liquid crystalline hydrogels composed of genetically engineered filamentous viruses. Mater. Chem. Front. 1, 146–151 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fernandez-nieves, A., Wyss, H. M., Mattsson, J. & Weitz, D. A. Microgel Suspensions https://doi.org/10.1002/9783527632992 (Wiley, 2011).

  • Li, Y. et al. Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage. Adv. Mater. 32, e2001260 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yun, Y. H., Goetz, D. J., Yellen, P. & Chen, W. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 25, 147–157 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, L. et al. Self-assembling nanofibrous bacteriophage microgels as sprayable antimicrobials targeting multidrug-resistant bacteria. Nat. Commun. 13, 7158 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, C., Tian, L., Liao, J., Zhang, X. & Gu, Z. Fabrication of bioinspired hierarchical functional structures by using honeycomb films as templates. Adv. Funct. Mater. 28, 1–8 (2018).

    Article 

    Google Scholar
     

  • Årdal, C. et al. Antibiotic development—economic, regulatory and societal challenges. Nat. Rev. Microbiol. 18, 267–274 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Emergency cases treated with investigational phage bank. Adaptive Phage Therapeutics https://aphage.com/science/case-studies/ (2023).

  • Maitz, J., Merlino, J., Rizzo, S., McKew, G. & Maitz, P. Burn wound infections microbiome and novel approaches using therapeutic microorganisms in burn wound infection control. Adv. Drug Deliv. Rev. 196, 114769 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Awwad, S. et al. Principles of pharmacology in the eye. Br. J. Pharmacol. 174, 4205–4223 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jóhannesson, G., Stefánsson, E. & Loftsson, T. Microspheres and nanotechnology for drug delivery. Dev. Ophthalmol. 55, 93–103 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rahman, R., Scharff, R. L. & Wu, F. Foodborne disease outbreaks in flour and flour-based food products from microbial pathogens in the United States, and their health economic burden. Risk Anal. https://doi.org/10.1111/risa.14132 (2023).

  • Prasad, A. et al. Advancing in situ food monitoring through a smart lab‐in‐a‐package system demonstrated by the detection of salmonella in whole chicken. Adv. Mater. https://doi.org/10.1002/adma.202302641 (2023).

  • GRAS notice 755, Preparation containing two bacterial phages specific to Escherichia coli O157Food and Drug Administration https://www.fda.gov/media/117249/download (2018).

  • GRAS Notice 834, preparation containing bacterial phages specific to shiga-toxin producing Escherichia coliFood and Drug Administration https://www.fda.gov/media/133519/download (2019).

  • Chen, Y., Wang, Y., Paez-Espino, D., Polz, M. F. & Zhang, T. Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants. Nat. Commun. 12, 5398 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayat, F., Didar, T. F. & Hosseinidoust, Z. Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater. Environ. Sci. Nano 8, 367–389 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. M. & Sagona, A. P. Armed phages are heading for clinical trials. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01415-w (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Headen, D. M., Aubry, G., Lu, H. & García, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26, 3003–3008 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eydelnant, I. A., Betty Li, B. & Wheeler, A. R. Microgels on-demand. Nat. Commun. 5, 3355 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Brugger, B. & Richtering, W. Magnetic, thermosensitive microgels as stimuli-responsive emulsifiers allowing for remote control of separability and stability of oil in water-emulsions. Adv. Mater. 19, 2973–2978 (2007).

    Article 
    CAS 

    Google Scholar
     

  • An, H. Z., Helgeson, M. E. & Doyle, P. S. Nanoemulsion composite microgels for orthogonal encapsulation and release. Adv. Mater. 24, 3838–3844 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitt, C. et al. Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment. Soft Matter 6, 4876–4884 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Nicolai, T. Formation and functionality of self-assembled whey protein microgels. Colloids Surf. B Biointerfaces 137, 32–38 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phan-Xuan, T. et al. On the crucial importance of the ph for the formation and self-stabilization of protein microgels and strands. Langmuir 27, 15092–15101 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Rapid assembly of heterogeneous 3D cell microenvironments in a microgel array. Adv. Mater. 28, 3543–3548 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeh, J. et al. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27, 5391–5398 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 39, 831–859 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, K. et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7, 135 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burmeister, A. R. & Turner, P. E. Trading-off and trading-up in the world of bacteria–phage evolution. Curr. Biol. 30, R1120–R1124 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daly, R., Sader, J. E. & Boland, J. J. Taming self-organization dynamics to dramatically control porous architectures. ACS Nano 10, 3087–3092 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takehiro Nishikawa et al. Fabrication of honeycomb film of an amphiphilic copolymer at the air−water interface. Langmuir 18, 5734–5740 (2002).

    Article 

    Google Scholar
     

  • Wang, W. et al. Deterministic reshaping of breath figure arrays by directional photomanipulation. ACS Appl. Mater. Interfaces 9, 4223–4230 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, A., Bai, H. & Li, L. Breath figure: a nature-inspired preparation method for ordered porous films. Chem. Rev. 115, 9801–9868 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X., Bukusoglu, E. & Abbott, N. L. A practical guide to the preparation of liquid crystal-templated microparticles. Chem. Mater. 29, 53–61 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Widawski, G. & Rawiso, M. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387–389 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, A. et al. Formation of breath figure arrays in methanol vapor assisted by surface active agents. ACS Appl. Mater. Interfaces 6, 8921–8927 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B., Zhang, J., Wang, X. & Li, C. Water-assisted fabrication of honeycomb structure porous film from poly (l-lactide). J. Mater. Chem. 16, 509–513 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C., Lang, W., Shi, B. & Guo, Y. Fabrication of ordered honeycomb porous polyvinyl chloride (PVC) films by breath figures method. Mater. Lett. 107, 53–55 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yabu, H., Tanaka, M., Ijiro, K. & Shimomura, M. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir 19, 6297–6300 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual 3rd edn https://doi.org/10.1177/0261018311403863 (Cold Spring Harbour Laboratory Press, 2001).

  • Chung, W. J., Lee, D. Y. & Yoo, S. Y. Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine. Int. J. Nanomed. 9, 5825–5836 (2014).


    Google Scholar
     

  • Courchesne, N. M. D. et al. Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks. Adv. Mater. 26, 3398–3404 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, L., He, L., Jackson, K., Mahabir, R. & Hosseinidoust, Z. Bacteria repellent protein hydrogel decorated with tunable, isotropic, nano-on-micro hierarchical microbump array. Chem. Commun. 57, 10883–10886 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Migneault, I., Dartiguenave, C., Bertrand, M. J. & Waldron, K. C. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37, 790–802 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, C. G. in Forensic Microscopy for Skeletal Tissues (ed. Bell, L. S.) 1–20 (Springer, 2012).