High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering – Communications Biology

  • Dhobale, M. V., Wadhwani, N., Mehendale, S. S., Pisal, H. R. & Joshi, S. R. Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries. Prostaglandins Leukot. Essent. Fat. Acids 85, 149–153 (2011).

    Article  CAS  Google Scholar 

  • Li, Q., Chen, J., Yu, X. & Gao, J. M. A mini review of nervonic acid: source, production, and biological functions. Food Chem. 301, 125286 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Lewkowicz, N. et al. Naturally occurring nervonic acid ester improves myelin synthesis by human oligodendrocytes. Cells 8, 786 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terluk, M. R. et al. Nervonic acid attenuates accumulation of very long-chain fatty acids and is a potential therapy for Adrenoleukodystrophy. Neurotherapeutics 19, 1007–1017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astarita, G. et al. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer’s disease. PLoS One 6, e24777 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, D., Cui, Y. & Zhang, J. Nervonic acid ameliorates motor disorder in mice with Parkinson’s Disease. Neurochem. J. 15, 317–324 (2021).

    Article  CAS  Google Scholar 

  • Song, W. et al. Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting acer truncatum Bunge seed oil revealed by lipidomics approach. Food Funct. 13, 2475–2490 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Kageyama, Y. et al. Nervonic acid level in cerebrospinal fluid is a candidate biomarker for depressive and manic symptoms: a pilot study. Brain Behav. 11, 02075 (2021).

    Article  Google Scholar 

  • Kageyama, Y. et al. Plasma nervonic acid Is a potential biomarker for major depressive disorder: a pilot study. Int. J. Neuropsychopharmacol. 21, 207–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Delgado, G. E. et al. Individual omega-9 monounsaturated fatty acids and mortality-The Ludwigshafen Risk and Cardiovascular Health Study. J. Clin. Lipidol. 11, 126–135 (2017).

    Article  PubMed  Google Scholar 

  • Keppley, L. J. W. et al. Nervonic acid limits weight gain in a mouse model of diet-induced obesity. FASEB J. 34, 15314–15326 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Chivandi, E., Davidson, B. C. & Erlwanger, K. H. A comparison of the lipid and fatty acid profiles from the kernels of the fruit (nuts) of Ximenia caffra and Ricinodendron rautanenii from Zimbabwe. Ind. Crops Prod. 27, 29–32 (2008).

    Article  CAS  Google Scholar 

  • Li, X. et al. Biomass, Biofuels and Bioproducts. Algal Res. 43, 101619 (2019)..

  • Liu, F. et al. 1-Aminocyclopropane-1-Carboxylate deaminase-producing plant growth-promoting rhizobacteria improve drought stress tolerance in grapevine (Vitis vinifera L). Front. Plant Sci. 12, 706990 (2021).

  • Tang, T. F. et al. Constituents of the essential oil and fatty acid from Malania oleifera. Ind. Crops Prod. 43, 1–5 (2013).

    Article  CAS  Google Scholar 

  • Qiao, Q., Xue, W. & Feng, Z. Variability of seed oil content, fatty acid composition, and nervonic acid content in <em>Acer truncatum</em>, native to 14 regions of China. Grasas Y Aceites 69, 274 (2018).

    Article  Google Scholar 

  • Fan, Y., Meng, H. M., Hu, G.-R. & Li, F. Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Appl. Microbiol. Biotechnol. 102, 3027–3035 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Umemoto, H. et al. Fermentative production of nervonic acid by Mortierella capitata RD000969. J. Oleo Sci. 63, 671–679 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, C. et al. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuel 4, 47 (2011).

    Article  CAS  Google Scholar 

  • Li, J. X. et al. Disrupting a phospholipase A(2) gene increasing lipid accumulation in the oleaginous yeast Yarrowia lipolytica. J. Appl. Microbiol. 130, 100–108 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Xu, F. et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front. Plant Sci. 9, 506 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Holkenbrink, C. et al. Production of moth sex pheromones for pest control by yeast fermentation. Metab. Eng. 62, 312–321 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Luo, Z. et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab. Eng. 61, 344–351 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Muhammad, A., Feng, X., Rasool, A., Sun, W. & Li, C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol. Adv. 43, 107555 (2020). 107555.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Xu, P., Qiao, K., Ahn, W. S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl Acad. Sci. USA 113, 10848–10853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel Mawgoud, A. M. et al. Metabolic engineering in the host Yarrowia lipolytica. Metab. Eng. 50, 192–208 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Miller, K. K. & Alper, H. S. Yarrowia lipolytica: more than an oleaginous workhorse. Appl. Microbiol. Biotechnol. 103, 9251–9262 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Xue, Z. et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31, 734–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Sun, M. L. et al. Engineering Yarrowia lipolytica for efficient γ-linolenic acid production. Biochem. Eng. J. 117, 172–180 (2017).

    Article  CAS  Google Scholar 

  • Gemperlein, K. et al. Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases. Nat. Commun. 10, 4055 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, D., Jackson, E. N. & Zhu, Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl. Microbiol. Biotechnol. 99, 1599–1610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai, M. & Stephanopoulos, G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y. et al. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Mol. Biol. 69, 565–575 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Fillet, S. et al. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl. Microbiol. Biotechnol. 101, 7271–7280 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. et al. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks. Microb. Cell Factories 15, 215 (2016).

    Article  Google Scholar 

  • Kim, J.-E. et al. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab. Eng. 56, 50–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Avalos, J. L., Fink, G. R. & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31, 335–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar, Z., Liu, N. & Stephanopoulos, G. Holistic approaches in lipid production by Yarrowia lipolytica. Trends Biotechnol. 36, 1157–1170 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, C., Shabbir Hussain, M., Frogue, K., Blenner, M. & Wheeldon, I. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth. Biol. 6, 402–409 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, A., Jiang, X., Ni, H., Yang, Q. & Cai, H. Study on the relationship between intracellular metabolites and astaxanthin accumulation during Phaffia rhodozyma fermentation. Electron. J. Biotechnol. 18, 148–153 (2015).

    Article  Google Scholar 

  • Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, 296–303 (2018).

    Article  Google Scholar 

  • Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Yuan, C., Jin, Y., Hu, G.-R. & Li, F. L. Activation of interleukin-1β release by the classical swine fever virus is dependent on the NLRP3 inflammasome, which affects virus growth in monocytes. Algal Res. Biomass Biofuel Bioprod. 31, 225–231 (2018).

    Google Scholar 

  • Yang, T. et al. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biol. 18, 367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ojemalm, K., Botelho, S. C., Studle, C. & von Heijne, G. Quantitative analysis of SecYEG-mediated insertion of transmembrane α-helices into the bacterial inner membrane. J. Mol. Biol. 425, 2813–2822 (2013).

    Article  PubMed  Google Scholar 

  • Omasits, U., Ahrens, C. H., Mueller, S. & Wollscheid, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huai, D., Zhang, Y., Zhang, C., Cahoon, E. B. & Zhou, Y. Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in camelina sativa. PLoS One 10, 0131755 (2015).

    Article  Google Scholar 

  • Singh, B. K., Bala, M. & Rai, P. K. Fatty acid composition and seed meal characteristics of Brassica and Allied Genera. Natl Acad. Sci. Lett. India 37, 219–226 (2014).

    Article  CAS  Google Scholar 

  • Sun, X. et al. Correction: Genetic diversity and population structure of rice pathogen ustilaginoidea virens in China. PLoS One 8, 12 (2013).

    Article  Google Scholar 

  • Trenkamp, S., Martin, W. & Tietjen, K. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc. Natl Acad. Sci. USA 101, 11903–11908 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerner, J. & Hoppel, C. Fatty acid import into mitochondria. Biochim. Et. Biophys. Acta. Mol. Cell Biol. Lipids 1486, 1–17 (2000).

    Article  CAS  Google Scholar 

  • Yang, K. et al. Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica. Metab. Eng. 55, 231–238 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen, J. K. et al. Mitochondrial fatty acid synthesis type II: more than just fatty acids. J. Biol. Chem. 284, 9011–9015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malina, C., Larsson, C. & Nielsen, J. Yeast mitochondria: An overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res. 18, foy040 (2018).

  • Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. A. et al. Involvement of Arabidopsis ACYL-COENZYME A DESATURASE-LIKE2 (At2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids. Plant Physiol. 161, 81–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos, A. et al. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48, 375–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bai, Y. et al. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524, 252–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, H. B. et al. Fatty acid elongase 6 plays a role in the synthesis of long-chain fatty acids in goat mammary epithelial cells. J. Dairy Sci. 100, 4987–4995 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Yazawa, H., Kamisaka, Y., Kimura, K., Yamaoka, M. & Uemura, H. Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols. Appl. Microbiol. Biotechnol. 91, 1593–1600 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Frltzler, J. M., Millership, J. J. & Zhu, G. Cryptosporidium parvumlong-chain fatty acid elongase. Eukaryot. Cell 6, 2018–2028 (2007).

    Article  Google Scholar 

  • Wongwathanarat, P. et al. Two fatty acid delta9-desaturase genes, ole1 and ole2, from Mortierella alpina complement the yeast ole1 mutation. Microbiol. SGM 145, 2939–2946 (1999).

    Article  CAS  Google Scholar 

  • Watts, J. L. & Browse, J. A palmitoyl-CoA-specific delta9 fatty acid desaturase from Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 272, 263–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wan, X., Liang, Z., Gong, Y., Zhang, Y. & Jiang, M. Characterization of three Δ9-fatty acid desaturases with distinct substrate specificity from an oleaginous fungus Cunninghamella echinulata. Mol. Biol. Rep. 40, 4483–4489 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Schwank, S., Hoffmann, B. & Schuller, H. J. Influence of gene dosage and autoregulation of the regulatory genes INO2 and INO4 on inositol/choline-repressible gene transcription in the yeast Saccharomyces cerevisiae. Curr. Genet. 31, 462–468 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Fang, T. et al. Chromatin remodeling complexes are involvesd in the regulation of ethanol production during static fermentation in budding yeast. Genomics 112, 1674–1679 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Back, A., Rossignol, T., Krier, F., Nicaud, J. M. & Dhulster, P. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Microb. Cell Factories 15, 147 (2016). 147.

    Article  Google Scholar 

  • Wang, K., Lin, L., Wei, P., Ledesma-Amaro, R. & Ji, X.-J. Combining orthogonal plant and non-plant fatty acid biosynthesis pathways for efficient production of microbial oil enriched in nervonic acid in Yarrowia lipolytica Bioresour. Technol. 378, 129012 (2023).

    CAS  Google Scholar 

  • Wang, Q. et al. Manipulating fatty-acid profile at unit chain-length resolution in the model industrial oleaginous microalgae Nannochloropsis. Metab. Eng. 66, 157–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Xin, Y. et al. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol. Plant 12, 474–488 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Koerbes, A. P., Kulcheski, F. R., Margis, R., Margis-Pinheiro, M. & Turchetto Zolet, A. C. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol. Phylogenet. Evol. 96, 55–69 (2016).

    Article  Google Scholar 

  • Liu, Q., Siloto, R. M. P., Lehner, R., Stone, S. J. & Weselake, R. J. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog. Lipid Res. 51, 350–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Jeppson, S., Mattisson, H., Demski, K. & Lager, I. A predicted transmembrane region in plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain acyl-CoAs. J. Biol. Chem. 295, 15398–15406 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Q. et al. Yarrowia lipolytica as a metabolic engineering platform for the production of very-long-chain wax esters. J. Agric. Food Chem. 68, 10730–10740 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, D. C. et al. Biofuel Bioprod. Biorefin. 4, 538–561 (2010).

    Article  CAS  Google Scholar 

  • Yu, T. et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat. Commun. 8, 14956 (2017).

  • Xu, Q. et al. Biotechnology in future food lipids: opportunities and challenges. Annu. Rev. Food Sci. Technol. 14, 225–246 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Phung, N. V., et al. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit. Rev. Food Sci. Nutr. 28, 1–20 (2023).

  • Fretts, A. M. et al. Plasma ceramide species are associated with diabetes risk in participants of the strong heart study. J. Nutr. 150, 1214–1222 (2020).

    Article  PubMed  Google Scholar 

  • Jensen, P. N. et al. Plasma ceramides and sphingomyelins in relation to atrial fibrillation risk: the cardiovascular health study. J. Am. Heart Assoc. 9, 012853 (2020).

    Article  Google Scholar 

  • Lemaitre, R. N. & King, I. B. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 33, 76–82 (2022).

    Article  CAS  PubMed  Google Scholar