Heterozygous variants disrupting the interaction of ERF with activated ERK1/2 cause microcephaly, developmental delay, and skeletal anomalies

  • Athanasiou M, Blair DG, Mavrothalassitis G. ERF, an ETS-related transcriptional repressor, can induce erythroid differentiation. Anticancer Res. 2003;23:2143–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Peraki I, Palis J, Mavrothalassitis G. The Ets2 Repressor Factor (Erf) is required for effective primitive and definitive hematopoiesis. Mol Cell Biol. 2017;37:e00183-17.

  • Papadaki C, Alexiou M, Cecena G, Verykokakis M, Bilitou A, Cross JC, et al. Transcriptional repressor erf determines extraembryonic ectoderm differentiation. Mol Cell Biol. 2007;27:5201–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorgia E, Zaragkoulias A, Peraki I, Mavrothalassitis G. Suppression of Fgf2 by ETS2 repressor factor (ERF) is required for chorionic trophoblast differentiation. Mol Reprod Dev. 2017;84:286–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glass GE, O’Hara J, Canham N, Cilliers D, Dunaway D, Fenwick AL, et al. ERF-related craniosynostosis: The phenotypic and developmental profile of a new craniosynostosis syndrome. Am J Med Genet A. 2019;179:615–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Twigg SR, Vorgia E, McGowan SJ, Peraki I, Fenwick AL, Sharma VP, et al. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet. 2013;45:308–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sgouras DN, Athanasiou MA, Beal GJ Jr, Fisher RJ, Blair DG, Mavrothalassitis GJ. ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 1995;14:4781–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bose R, Karthaus WR, Armenia J, Abida W, Iaquinta PJ, Zhang Z, et al. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature. 2017;546:671–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang FW, Mosquera JM, Garofalo A, Oh C, Baco M, Amin-Mansour A, et al. Exome sequencing of African-American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov. 2017;7:973–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athanasiou M, LeGallic L, Watson DK, Blair DG, Mavrothalassitis G. Suppression of the Ewing’s sarcoma phenotype by FLI1/ERF repressor hybrids. Cancer Gene Ther. 2000;7:1188–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogura K, Elkrief A, Bowman AS, Koche RP, de Stanchina E, Benayed R, et al. Prospective clinical genomic profiling of ewing sarcoma: ERF and FGFR1 mutations as recurrent secondary alterations of potential biologic and therapeutic relevance. JCO Precis Oncol. 2022;6:e2200048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lackner A, Muller M, Gamperl M, Stoeva D, Langmann O, Papuchova H, et al. The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate. Nat Commun. 2023;14:2559.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vega-Sendino M, Olbrich T, Tillo D, Tran AD, Domingo CN, Franco M, et al. The ETS transcription factor ERF controls the exit from the naive pluripotent state in a MAPK-dependent manner. Sci Adv. 2021;7:eabg8306.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polychronopoulos S, Verykokakis M, Yazicioglu MN, Sakarellos-Daitsiotis M, Cobb MH, Mavrothalassitis G. The transcriptional ETS2 repressor factor associates with active and inactive Erks through distinct FXF motifs. J Biol Chem. 2006;281:25601–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhry A, Sabatini P, Han L, Ray PN, Forrest C, Bowdin S. Heterozygous mutations in ERF cause syndromic craniosynostosis with multiple suture involvement. Am J Med Genet A. 2015;167A:2544–7.

    Article 
    PubMed 

    Google Scholar
     

  • Korberg I, Nowinski D, Bondeson ML, Melin M, Kolby L, Stattin EL. A progressive and complex clinical course in two family members with ERF-related craniosynostosis: a case report. BMC Med Genet. 2020;21:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee E, Le T, Zhu Y, Elakis G, Turner A, Lo W, et al. A craniosynostosis massively parallel sequencing panel study in 309 Australian and New Zealand patients: findings and recommendations. Genet Med. 2018;20:1061–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moddemann MK, Kieslich M, Koenig R. Intrafamilial variability in six family members with ERF-related craniosynostosis syndrome type 4. Am J Med Genet A. 2022;188:2969–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dentici ML, Niceta M, Lepri FR, Mancini C, Priolo M, Bonnard AA, et al. Loss-of-function variants in ERF are associated with a Noonan syndrome-like phenotype with or without craniosynostosis. Eur J Hum Genet. 2024;32:954–963.

  • Yamada M, Funato M, Kondo G, Suzuki H, Uehara T, Takenouchi T, et al. Noonan syndrome-like phenotype in a patient with heterozygous ERF truncating variant. Congenit Anom (Kyoto). 2021;61:226–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calpena E, McGowan SJ, Blanco Kelly F, Boudry-Labis E, Dieux-Coeslier A, Harrison R, et al. Dissection of contiguous gene effects for deletions around ERF on chromosome 19. Hum Mutat. 2021;42:811–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh R, Cohen ASA, Poulton C, Hjortshoj TD, Akahira-Azuma M, Mendiratta G, et al. Deletion of ERF and CIC causes abnormal skull morphology and global developmental delay. Cold Spring Harb Mol Case Stud. 2021;7:a005991.

  • Balasubramanian M, Lord H, Levesque S, Guturu H, Thuriot F, Sillon G, et al. Chitayat syndrome: hyperphalangism, characteristic facies, hallux valgus and bronchomalacia results from a recurrent c.266A>G p.(Tyr89Cys) variant in the ERF gene. J Med Genet 2017;54:157–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suter AA, Santos-Simarro F, Toerring PM, Abad Perez A, Ramos-Mejia R, Heath KE, et al. Variable pulmonary manifestations in Chitayat syndrome: Six additional affected individuals. Am J Med Genet A. 2020;182:2068–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M, et al. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J. 2010;29:2147–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586:757–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Kim CN, Bakken TE, Gillentine MA, Henning B, Mao Y, et al. Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders. Proc Natl Acad Sci USA. 2022;119:e2203491119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexa A, Sok P, Gross F, Albert K, Kobori E, Poti AL, et al. A non-catalytic herpesviral protein reconfigures ERK-RSK signaling by targeting kinase docking systems in the host. Nat Commun. 2022;13:472.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF. AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput Biol. 2015;11:e1004586.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292:195–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Sanner MF. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes. Bioinformatics. 2019;35:5121–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Gallic L, Sgouras D, Beal G Jr, Mavrothalassitis G. Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol Cell Biol. 1999;19:4121–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Gallic L, Virgilio L, Cohen P, Biteau B, Mavrothalassitis G. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol Cell Biol. 2004;24:1206–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner TN, Wilfert AB, Bakken TE, Bernier RA, Pepper MR, Zhang Z, et al. Sex-based analysis of De Novo variants in neurodevelopmental disorders. Am J Hum Genet. 2019;105:1274–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Treen N, Chavarria E, Weaver CJ, Brangwynne CP, Levine M. An FGF timer for zygotic genome activation. Genes Dev. 2023;37:80–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogiatzi A, Baltsavia I, Dialynas E, Theodorou V, Zhou Y, Deligianni E, et al. Erf affects commitment and differentiation of osteoprogenitor cells in cranial sutures via the retinoic acid pathway. Mol Cell Biol. 2021;41:e0014921.

    Article 
    PubMed 

    Google Scholar
     

  • Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015;29:1463–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone. 2020;137:115409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5:181.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar