Search
Close this search box.

Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs – Scientific Reports

  • Chen, X. et al. Drug–target interaction prediction: databases, web servers and computational models. Brief. Bioinform. 17(4), 696–712 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58(3), 621–681 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, R. J. et al. A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin. Cancer Res. 17(3), 569–580 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. ASDCD: Antifungal synergistic drug combination database. PLoS ONE 9(1), e86499 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzgerald, J. B., Schoeberl, B., Nielsen, U. B. & Sorger, P. K. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2(9), 458–466 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today 12(1–2), 34–42 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borisy, A. A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. 100(13), 7977–7982 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 10(12), S122–S129 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Groll, A. H. & Walsh, T. J. Antifungal chemotherapy: Advances and perspectives. Swiss Med. Wkly. 132(2324), 303 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. -J., Hu, F. -Y., Song, J. & Zhao, X. -M. Exploring drug combinations in a drug-cocktail network. In 2011 IEEE International Conference on Systems Biology (ISB) 382–387 (2011).

  • Zhang, L. et al. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc. Natl. Acad. Sci. 104(11), 4606–4611 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. NLLSS: Predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput. Biol. 12(7), e1004975 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, W. et al. Systematic review of computational methods for drug combination prediction. Comput. Struct. Biotechnol. J. 20, 2807–2814. https://doi.org/10.1016/j.csbj.2022.05.055 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mokhtari, R. B. et al. Combination therapy in combating cancer. Oncotarget 8(23), 38022 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Gilad, Y., Gellerman, G., Lonard, D. M. & O’malley, B. W. Drug combination in cancer treatment—From cocktails to conjugated combinations. Cancers 13(4), 1–26. https://doi.org/10.3390/cancers13040669 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sidorov, P., Naulaerts, S., Ariey-Bonnet, J., Pasquier, E. & Ballester, P. J. Predicting synergism of cancer drug combinations using NCI-ALMANAC data. Front. Chem. 7(July), 1–13. https://doi.org/10.3389/fchem.2019.00509 (2019).

    Article 
    CAS 

    Google Scholar
     

  • DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22(2), 151–185. https://doi.org/10.1016/S0167-6296(02)00126-1 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Lehár, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3(1), 80 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, G. et al. Chemogenomic profiling predicts antifungal synergies. Mol. Syst. Biol. 5(1), 338 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3, 285–290 (1953).

    CAS 
    PubMed 

    Google Scholar
     

  • Loewe, S. Effect of combinations: Mathematical basis of problem. Arch. Exp. Pathol. Pharmakol. 114, 313–326 (1926).

    Article 
    CAS 

    Google Scholar
     

  • Bliss, C. I. The toxicity of poisons applied jointly 1. Ann. Appl. Biol. 26(3), 585–615 (1939).

    Article 
    CAS 

    Google Scholar
     

  • Chou, T.-C. & Talalay, P. Analysis of combined drug effects: A new look at a very old problem. Trends Pharmacol. Sci. 4, 450–454 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Chou, T. C. Quantitative dose-effect analysis and algorithms-a theoretical-study. Asia Pac. J. Pharmacol. 2(2), 93–99 (1987).


    Google Scholar
     

  • Chou, T.-C. & Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, T. C. Comparison of mass-action law with power law, probit law and logit law in dose-effect analyses. In Pharmacologist 165 (1977).

  • Chou, T.-C. Derivation and properties of Michaelis–Menten type and Hill type equations for reference ligands. J. Theor. Biol. 59(2), 253–276 (1976).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Greco, W. R., Park, H. S. & Rustum, Y. M. Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-$β$-d-arabinofuranosylcytosine. Cancer Res. 50(17), 5318–5327 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. H. et al. Statistical metamodeling for revealing synergistic antimicrobial interactions. PloS ONE 5(11), e15472 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S., Zhang, B. & Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol. 5(1), 1–13 (2011).

    CAS 

    Google Scholar
     

  • Zhao, X.-M. et al. Prediction of drug combinations by integrating molecular and pharmacological data. PLoS Comput. Biol. 7(12), e1002323 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H., Zhang, P., Qu, X. A., Sanseau, P. & Yang, L. Systematic prediction of drug combinations based on clinical side-effects. Sci. Rep. 4(1), 1–7 (2014).

    Article 

    Google Scholar
     

  • Yin, N. et al. Synergistic and antagonistic drug combinations depend on network topology. PloS ONE 9(4), e93960 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwata, H., Sawada, R., Mizutani, S., Kotera, M. & Yamanishi, Y. Large-scale prediction of beneficial drug combinations using drug efficacy and target profiles. J. Chem. Inf. Model. 55(12), 2705–2716 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, D., Zhang, H., Lu, P., Liu, X. & Cao, H. Synergy evaluation by a pathway–pathway interaction network: A new way to predict drug combination. Mol. Biosyst. 12(2), 614–623 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun. 6(1), 1–10 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, X. et al. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med. 83, 35–43 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, L. et al. DrugComboRanker: Drug combination discovery based on target network analysis. Bioinformatics 30(12), i228–i236 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malyutina, A. et al. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput. Biol. 15(5), e1006752 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, P. et al. Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput. Struct. Biotechnol. J. 18, 427–438. https://doi.org/10.1016/j.csbj.2020.02.006 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. & Xie, L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput. Biol. 17(2), e1008653 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Wei, Q., Yu, G., Gai, W., Li, Y. & Chen, X. DCDB 2.0: A major update of the drug combination database. Database 2014 (2014).

  • Bansal, M. et al. A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol. 32(12), 1213–1222 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, F. et al. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform. 19(18), 71–79 (2018).


    Google Scholar
     

  • Holbeck, S. L. et al. The National Cancer Institute ALMANAC: A comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res. 77(13), 3564–3576 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neil, J. et al. An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther. 15(6), 1155–1162. https://doi.org/10.1158/1535-7163.MCT-15-0843 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X., Guan, N.-N., Sun, Y.-Z., Li, J.-Q. & Qu, J. MicroRNA-small molecule association identification: From experimental results to computational models. Brief. Bioinform. 21(1), 47–61. https://doi.org/10.1093/bib/bby098 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C.-C., Zhao, Y. & Chen, X. Drug-pathway association prediction: From experimental results to computational models. Brief. Bioinform. 22(3), bbaa061. https://doi.org/10.1093/bib/bbaa061 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • K. Hazelwood et al. Applied machine learning at facebook: A datacenter infrastructure perspective. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA) 620–629 (2018).

  • Langley, P. et al. Selection of relevant features in machine learning. In Proceedings of the AAAI Fall Symposium on Relevance 245–271 (1994).

  • Breiman, L. Random forests. Mach. Learn. 45(1), 5–32 (2001).

    Article 

    Google Scholar
     

  • Le Cessie, S. & Van Houwelingen, J. C. Ridge estimators in logistic regression. J. R. Stat. Soc. Ser. C (Appl. Stat.) 41(1), 191–201 (1992).


    Google Scholar
     

  • Kumari, R. & Jose, J. Seizure detection in EEG using biorthogonal wavelet and fuzzy KNN classifier. Elixir Hum. Physiol. 41, 5766–5770 (2011).


    Google Scholar
     

  • Altay, O. & Ulas, M. Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children. In 2018 6th International Symposium on Digital Forensic and Security (ISDFS) 1–4 (2018).

  • Kleinbaum, D. G., Kupper, L. L., Nizam, A. & Rosenberg, E. S. Applied Regression Analysis and Other Multivariable Methods (Cengage Learning, 2013).


    Google Scholar
     

  • Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 32(12), 1202–1212 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970).

    Article 

    Google Scholar
     

  • Wan, Q. & Pal, R. An ensemble based top performing approach for NCI-DREAM drug sensitivity prediction challenge. PloS ONE 9(6), e101183 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Julkunen, H. et al. Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat. Commun. 11(1), 1–11 (2020).

    Article 

    Google Scholar
     

  • Ling, A. & Huang, R. S. Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action. Nat. Commun. 11(1), 1–13 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Preuer, K. et al. DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformatics 34(9), 1538–1546 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ianevski, A. et al. Prediction of drug combination effects with a minimal set of experiments. Nat. Mach. Intell. 1(12), 568–577 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, J., Zhang, S. & Wang, C. The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers. Int. J. Mach. Learn. Cybern. 8(3), 1009–1017 (2017).

    Article 

    Google Scholar
     

  • Raschka, S. An Overview of General Performance Metrics of Binary Classifier Systems. arXiv preprint arXiv:1410.5330 (2014).

  • Tarek, Z. et al. Wind power prediction based on machine learning and deep learning models. Comput. Mater. Contin. https://doi.org/10.32604/cmc.2023.032533 (2023).

    Article 

    Google Scholar
     

  • Asteris, P. G. et al. On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength. 1 1(1), 63 (2020).


    Google Scholar
     

  • St, L. & Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 6(4), 259–272 (1989).

    Article 

    Google Scholar
     

  • Wooditch, A., Johnson, N. J., Solymosi, R., Ariza, J. M. & Langton, S. Analysis of variance (ANOVA). In A Beginner’s Guide to Statistics for Criminology and Criminal Justice Using R (eds Wooditch, A. et al.) 183–208 (Springer, 2021).

    Chapter 

    Google Scholar
     

  • Li, T.-H., Wang, C.-C., Zhang, L. & Chen, X. SNRMPACDC: Computational model focused on Siamese network and random matrix projection for anticancer synergistic drug combination prediction. Brief. Bioinform. 24(1), bbac503. https://doi.org/10.1093/bib/bbac503 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C., Su, Q., Ding, Z., Zeng, W. & Zhou, Z. A novel clinical tool to predict cancer-specific survival in patients with primary pelvic sarcomas: A large population-based retrospective cohort study. Cancer Med. 12(2), 1279–1292. https://doi.org/10.1002/cam4.4998 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Harmonizing across datasets to improve the transferability of drug combination prediction. Commun. Biol. https://doi.org/10.1038/s42003-023-04783-5 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuru, H. I., Tastan, O. & Cicek, A. E. MatchMaker: A deep learning framework for drug synergy prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 19(4), 2334–2344. https://doi.org/10.1109/TCBB.2021.3086702 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zagidullin, B. et al. DrugComb: An integrative cancer drug combination data portal. Nucl. Acids Res. 47(W1), W43–W51. https://doi.org/10.1093/nar/gkz337 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Y.-C. & Gottlieb, A. SynPathy: Predicting drug synergy through drug-associated pathways using deep learning. Mol. Cancer Res. 20(5), 762–769. https://doi.org/10.1158/1541-7786.MCR-21-0735 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Khili, M. R., Memon, S. A. & Emad, A. MARSY: A multitask deep-learning framework for prediction of drug combination synergy scores. Bioinformatics 39(4), btad177 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guertin, A. D. et al. Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition. Cancer Cell Int. 12(1), 45. https://doi.org/10.1186/1475-2867-12-45 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muellner, M. K. et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat. Chem. Biol. https://doi.org/10.1038/nchembio.695 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kristina Preuer. Deep Learning in Drug Discovery. Johannes Kepler University Linz, Institue for Machine Learning. Accessed: November 01 2024. [Online]. Available: https://epub.jku.at/obvulihs/content/titleinfo/3853666 (2019).

  • Chung, S. W. et al. Metronomic oral doxorubicin in combination of Chk1 inhibitor MK-8776 for p53-deficient breast cancer treatment. Biomaterials 182, 35–43. https://doi.org/10.1016/j.biomaterials.2018.08.007 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montano, R. et al. Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: Cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer 13(1), 604. https://doi.org/10.1186/1471-2407-13-604 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard, D. et al. Dinaciclib as an effective pan-cyclin dependent kinase inhibitor in platinum resistant ovarian cancer. Front. Oncol. https://doi.org/10.3389/fonc.2022.1014280 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T., Zhang, L., Payne, P. R. O. & Li, F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. In Translational Bioinformatics for Therapeutic Development in Methods in Molecular Biology (ed. Markowitz, J.) 223–238 (Springer US, 2021). https://doi.org/10.1007/978-1-0716-0849-4_12.

    Chapter 

    Google Scholar
     

  • Liu, X. et al. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction. Bioinformatics 38(20), 4782–4789. https://doi.org/10.1093/bioinformatics/btac579 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bukhari, A. B., Chan, G. K. & Gamper, A. M. Targeting the DNA damage response for cancer therapy by inhibiting the kinase WEE1. Front. Oncol. https://doi.org/10.3389/fonc.2022.828684 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlot, A. H. C., Aniceto, N., Menden, M. P., Ulrich-Merzenich, G. & Bender, A. Applying synergy metrics to combination screening data: Agreements, disagreements and pitfalls. Drug Discov. Today 24(12), 2286–2298. https://doi.org/10.1016/j.drudis.2019.09.002 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chien, W. et al. Treatment for ovarian clear cell carcinoma with combined inhibition of WEE1 and ATR. J. Ovarian Res. 16(1), 80. https://doi.org/10.1186/s13048-023-01160-y (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duran, I. et al. Phase I targeted combination trial of sorafenib and erlotinib in patients with advanced solid tumors. Clin. Cancer Res. 13(16), 4849–4857. https://doi.org/10.1158/1078-0432.CCR-07-0382 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. J. et al. A phase II trial to evaluate the efficacy of Bortezomib and liposomal doxorubicin in patients with BRCA Wild-type platinum-resistant recurrent ovarian cancer (KGOG 3044/EBLIN). In Vivo 36(4), 1949–1958. https://doi.org/10.21873/invivo.12917 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, S. et al. WEE1 inhibitor AZD1775 effectively inhibits the malignant phenotypes of esophageal squamous cell carcinoma in vitro and in vivo. Front. Pharmacol. https://doi.org/10.3389/fphar.2019.00864 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lane, M. et al. In vivo synergy between oncolytic reovirus and gemcitibane in ras-mutated human HCT116 xenografts. Cancer Res. 67(9_Supplement), 4812 (2007).


    Google Scholar
     

  • Patil, V. M. et al. Beyond conventional chemotherapy, targeted therapy and immunotherapy in squamous cell cancer of the oral cavity. Oral Oncol. 105, 104673. https://doi.org/10.1016/j.oraloncology.2020.104673 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakurikar, N., Thompson, R., Montano, R. & Eastman, A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget 7(2), 1380–1394 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Parsels, L. A. et al. The contribution of DNA replication stress marked by high-intensity, pan-nuclear γH2AX staining to chemosensitization by CHK1 and WEE1 inhibitors. Cell Cycle 17(9), 1076–1086. https://doi.org/10.1080/15384101.2018.1475827 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai, C.-J. Salvage therapy with sorafenib plus vinblastine and fluorouracil for metastatic renal cell carcinoma. Acta Oncol. 48(6), 931–932. https://doi.org/10.1080/02841860903071351 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kuhn, D. J. et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood 120(16), 3260–3270. https://doi.org/10.1182/blood-2011-10-386789 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Topical kinase inhibitors induce regression of cutaneous squamous cell carcinoma. Exp. Dermatol. 28(5), 609–613. https://doi.org/10.1111/exd.13902 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, X. et al. AZD1775 increases sensitivity to olaparib and gemcitabine in cancer cells with p53 mutations. Cancers https://doi.org/10.3390/cancers10050149 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreira, D. C. et al. Targeting MYC-driven replication stress in medulloblastoma with AZD1775 and gemcitabine. J. Neurooncol. 147(3), 531–545. https://doi.org/10.1007/s11060-020-03457-0 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, J. Y. et al. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 Replication resulting in synergistic antitumor effects. Clin. Cancer Res. 20(14), 3787–3798. https://doi.org/10.1158/1078-0432.CCR-14-0553 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polley, E. et al. Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression. J. Natl. Cancer Inst. 108(10), djw122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, T., Gay, C. M. & Byers, L. A. Targeting DNA damage repair in small cell lung cancer and the biomarker landscape. Transl. Lung Cancer Res. 7(1), 50–68. https://doi.org/10.21037/tlcr.2018.02.03 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, A. B., McNeely, S. C. & Beckmann, R. P. Achieving precision death with cell-cycle inhibitors that target DNA replication and repair. Clin. Cancer Res. 23(13), 3232–3240. https://doi.org/10.1158/1078-0432.CCR-16-0083 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, N. et al. Replication stress leading to apoptosis within the S-phase contributes to synergism between vorinostat and AZD1775 in HNSCC harboring high-risk TP53 mutation. Clin. Cancer Res. 23(21), 6541–6554. https://doi.org/10.1158/1078-0432.CCR-17-0947 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, L. et al. Methods for high-throughput drug combination screening and synergy scoring. In Cancer Systems Biology: Methods and Protocols in Methods in Molecular Biology (ed. von Stechow, L.) 351–398 (Springer, 2018). https://doi.org/10.1007/978-1-4939-7493-1_17.

    Chapter 

    Google Scholar
     

  • Danishuddin, & Khan, A. U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov. Today 21(8), 1291–1302. https://doi.org/10.1016/j.drudis.2016.06.013 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar