Green synthesis of silver and gold-doped zinc oxide nanocomposite with propolis extract for enhanced anticancer activity – Scientific Reports

  • Duhan, J. S. et al. Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports 15, 11–23 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamran, U., Bhatti, H. N., Iqbal, M. & Nazir, A. Green synthesis of metal nanoparticles and their applications in different fields: a review. Zeitschrift für Physikalische Chemie 233, 1325–1349 (2019).

    Article 

    Google Scholar
     

  • Prasad, R. D. et al. A review on concept of nanotechnology in veterinary medicine. ES Food Agrofor. 4, 28–60 (2021).


    Google Scholar
     

  • Shinde, M. U. et al. Nanomaterials: A potential hope for life sciences from bench to bedside. J. Nanomater. 2022, 1–13 (2022).

    Article 

    Google Scholar
     

  • Liao W-M, Lai W-T, Li P-W, Kuo M-T, Chen PS, Tsai M-J. 2005. Strong quantum confinement and coulomb blockade effects in Ge quantum dots/SiO/sub 2/system, p. 549–552. In 5th IEEE Conference on Nanotechnology, 2005. IEEE.

  • Bahrulolum, H. et al. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 19, 1–26 (2021).

    Article 

    Google Scholar
     

  • Rönkkö, T. & Timonen, H. Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas. J. Alzheimer’s Dis. 72, 15–28 (2019).

    Article 

    Google Scholar
     

  • Luyts, K., Napierska, D., Nemery, B. & Hoet, P. H. M. How physico-chemical characteristics of nanoparticles cause their toxicity: Complex and unresolved interrelations. Environ. Sci. Process. Impacts 15, 23–38 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, S. et al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J. Mol. Liquids 348, 118008 (2022).

    Article 

    Google Scholar
     

  • Nosheen, S. et al. A review: Development of magnetic nano vectors for biomedical applications. GSC Adv. Res. Rev. 8, 85–110 (2021).

    Article 

    Google Scholar
     

  • Lee, H.-Y. et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med. 49, 1371–1379 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Abdelsattar, A. S., Yakoup, A. Y., Safwat, A. & El-Shibiny, A. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Int. J. Biol. Macromol. 228, 374–384 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Krishnamurthy, S., Veerasamy, M. & Karruppaya, G. A review on plant sources for nano biopesticide production. Lett. Appl. NanoBioSci 9, 1348–1358 (2020).

    Article 

    Google Scholar
     

  • Kumar, H., Venkatesh, N., Bhowmik, H. & Kuila, A. Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 4, 3765–3775 (2018).


    Google Scholar
     

  • Chouke, P. B. et al. Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Mater. Today Adv. 16, 100314 (2022).

    Article 

    Google Scholar
     

  • Radičić, R., Maletić, D., Blažeka, D., Car, J. & Krstulović, N. Synthesis of silver, gold, and platinum doped zinc oxide nanoparticles by pulsed laser ablation in water. Nanomaterials 12, 3484 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agnihotri, R., Gaur, S. & Albin, S. Nanometals in dentistry: Applications and toxicological implications—A systematic review. Biol. Trace Elem. Res. 197, 70–88 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Matussin, S., Harunsani, M. H., Tan, A. L. & Khan, M. M. Plant-extract-mediated SnO2 nanoparticles: synthesis and applications. ACS Sustain. Chem. Eng. 8, 3040–3054 (2020).

    Article 

    Google Scholar
     

  • AlNadhari, S., Al-Enazi, N. M., Alshehrei, F. & Ameen, F. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ. Res. 194, 110672 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Sanna, V., Pala, N. & Sechi, M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9, 467 (2014).


    Google Scholar
     

  • Kingsley, J. D., Ranjan, S., Dasgupta, N. & Saha, P. Nanotechnology for tissue engineering: need, techniques and applications. J. Pharm. Res. 7, 200–204 (2013).


    Google Scholar
     

  • Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011).

    Article 

    Google Scholar
     

  • Nagajyothi, P. C., Sreekanth, T. V. M., Lee, J. & Lee, K. D. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J. Photochem. Photobiol. B: Biol. 130, 299–304 (2014).

    Article 

    Google Scholar
     

  • Nagajyothi PC, Sreekanth TVM. 2015. Green synthesis of metallic and metal oxide nanoparticles and their antibacterial activities, p. 99–117. In Green processes for nanotechnology. Springer.

  • Czyżowska, A. & Barbasz, A. A review: Zinc oxide nanoparticles–friends or enemies?. Int. J. Environ. Health Res. 32, 885–901 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sturikova, H., Krystofova, O., Huska, D. & Adam, V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 349, 101–110 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ettadili, F. E. et al. Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. J. Mol. Struct. 1248, 131538 (2022).

    Article 

    Google Scholar
     

  • Roszczenko, P., Szewczyk, O. K., Czarnomysy, R., Bielawski, K. & Bielawska, A. Biosynthesized gold, silver, palladium, platinum, copper, and other transition metal nanoparticles. Pharmaceutics 14, 2286 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Zhang, B.-P. & Zhao, J.-X. Enhanced photocatalytic performance of Au–Ag alloy modified ZnO nanocomposite films. J. Alloys Compounds 586, 663–668 (2014).

    Article 

    Google Scholar
     

  • Abdelsattar, A. S. et al. The promising antibacterial and anticancer activity of green synthesized zinc nanoparticles in combination with silver and gold nanoparticles. J. Inorg. Organomet. Polym. 33, 1868–1881 (2023).

    Article 

    Google Scholar
     

  • Ijaz, I., Gilani, E., Nazir, A. & Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 13, 223–245 (2020).

    Article 

    Google Scholar
     

  • Ahmad, W., Bhatt, S. C., Verma, M., Kumar, V. & Kim, H. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ. Nanotechnol. Monitor. Manag. 18, 100674 (2022).


    Google Scholar
     

  • Wei, T., Yu, Q. & Chen, H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way. Adv. Healthc. Mater. 8, 1801381 (2019).

    Article 

    Google Scholar
     

  • Huang, J. et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 105104 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ishak, N. A. I. M., Kamarudin, S. K. & Timmiati, S. N. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Mater. Res. Express 6, 112004 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Talib, A. et al. Biogenic copper nanoparticles as a nanoscale solution to address multiple drug resistance in bacteria. Pak. J. Zool. https://doi.org/10.17582/journal.pjz/20191115101110 (2021).

    Article 

    Google Scholar
     

  • Baptista, P. V. et al. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front. Microbiol. 9, 1441 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, T. et al. Recent advances in nanoparticles associated ecological harms and their biodegradation: Global environmental safety from nano-invaders. J. Environ. Chem. Eng. 9, 106093 (2021).

    Article 

    Google Scholar
     

  • Chokkareddy R, Redhi GG, Kanchi S, Ahmed S. 2018. Green synthesis of metal nanoparticles and its reaction mechanisms. Green metal nanoparticles 113–139.

  • Pal, G., Rai, P., Pandey, A. 2019. Green synthesis of nanoparticles: A greener approach for a cleaner future, p. 1–26. In Green synthesis, characterization and applications of nanoparticles. Elsevier.

  • Dhaka, A., Mali, S. C., Sharma, S. & Trivedi, R. A review on biological synthesis of Silver nanoparticles and their potential applications. Results Chem. 6, 101108 (2023).

    Article 

    Google Scholar
     

  • Singh, N. A. et al. Nanoparticles synthesis via microorganisms and their prospective applications in agriculture. Plant Nano Biol. 5, 100047 (2023).

    Article 

    Google Scholar
     

  • Barsola, B. & Kumari, P. Green synthesis of nano-propolis and nanoparticles (Se and Ag) from ethanolic extract of propolis, their biochemical characterization: A review. Green Processing and Synthesis 11, 659–673 (2022).

    Article 

    Google Scholar
     

  • Chelu, M. et al. Green synthesis of bioinspired chitosan-ZnO-based polysaccharide gums hydrogels with propolis extract as novel functional natural biomaterials. Int. J. Biol. Macromol. 211, 410–424 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pasupaleti, V. R. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid. Med. Cell. Long. https://doi.org/10.1155/2017/1259510 (2017).

    Article 

    Google Scholar
     

  • Cauich-Kumul, R., Campos, M.R.S. (2019) Bee propolis: Properties, chemical composition, applications, and potential health effects, p. 227–243. In Bioactive compounds. Elsevier.

  • Yaashikaa, P. R. et al. Recent advances in edible coatings and their application in food packaging. Food Res. Int. 173, 113366 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Salama, A. & El-Sakhawy, M. Polysaccharides/propolis composite as promising materials with biomedical and packaging applications: A review. Biomass Convers. Biorefinery 14(4), 4555–4565 (2022).

    Article 

    Google Scholar
     

  • Barsola, B. & Kumari, P. Green synthesis of nano-propolis and nanoparticles (Se and Ag) from ethanolic extract of propolis, their biochemical characterization: A review. Green Process. Synth. 11, 659–673 (2022).

    Article 

    Google Scholar
     

  • Botteon, C. E. A. et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 11, 1–16 (2021).

    Article 

    Google Scholar
     

  • Hajizadeh, Y. S., Harzandi, N., Babapour, E., Yazdanian, M. & Ranjbar, R. Green synthesize and characterization of copper nanoparticles using Iranian propolis extracts. Ad. Mater. Sci. Eng. 2022(1), 8100440 (2022).


    Google Scholar
     

  • Priyadarshini, J. F. et al. Green synthesis of silver nanoparticles from propolis. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 4, 23–36 (2018).


    Google Scholar
     

  • Saadawi, S. S. et al. Green synthesis and characterization of Libyan propolis nanoparticles and its biological activity. South Asian Res. J. Pharm. Sci. 4, 28–35 (2022).

    Article 

    Google Scholar
     

  • Salem, S. S. & Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Element Res. 199, 344–370 (2021).

    Article 

    Google Scholar
     

  • Madkhali, O. A. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharm. J. 31(9), 101733 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gawande, M. B. et al. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ulbrich, K. et al. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rossi, M. et al. Nanotechnology for food packaging and food quality assessment. Adv. Food Nutrit. Res. 82, 149–204 (2017).

    Article 

    Google Scholar
     

  • Ahmed, J. et al. Active chicken meat packaging based on polylactide films and bimetallic Ag–Cu nanoparticles and essential oil. J. Food Sci. 83, 1299–1310 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dos Santos, C. A., Ingle, A. P. & Rai, M. The emerging role of metallic nanoparticles in food. Appl. Microbiol. Biotechnol. 104, 2373–2383 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Oun, A. A. & Rhim, J.-W. Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohyd. Polym. 169, 467–479 (2017).

    Article 

    Google Scholar
     

  • Saidin, S., Jumat, M. A., Amin, N. A. A. M. & Al-Hammadi, A. S. S. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater. Sci. Eng. C 118, 111382 (2021).

    Article 

    Google Scholar
     

  • Sharma, M. et al. Inhibition of the bacterial growth as a consequence of synergism of Ag and ZnO: Calendula officinalis mediated green approach for nanoparticles and impact of altitude. Inorg. Chem. Commun. 136, 109131 (2022).

    Article 

    Google Scholar
     

  • Thapa, R. K. et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Coll. Sur. B Biointerfaces 153, 95–103 (2017).

    Article 

    Google Scholar
     

  • Brown, A. N. et al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 78, 2768–2774 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrakala, V., Aruna, V. & Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg. Mater. 5, 1593–1615 (2022).

    Article 

    Google Scholar
     

  • Salama, S. A. et al. Nano propolis, zinc oxide nanoparticles, and their composites: A novel green synthesis with synergistic antioxidant and anticancer properties. J Compos Sci 7, 480 (2023).

    Article 

    Google Scholar
     

  • Rezk, N. et al. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Expr 12, 108 (2022).

    Article 

    Google Scholar
     

  • Pordanjani, A. H. et al. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects-a critical review. J. Clean. Prod. 320, 128573 (2021).

    Article 

    Google Scholar
     

  • Javed, R. et al. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol. 16, 171–189 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balkir, P., Kemahlioglu, K. & Yucel, U. Foodomics: A new approach in food quality and safety. Trends Food Sci. Technol. 108, 49–57 (2021).

    Article 

    Google Scholar
     

  • Viorica, R. et al. Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@ AgNCl synthesized by biological method. Discov. Nano 18, 2 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandiyan, N. et al. Ionic liquid – A greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities. J. Photochem. Photobiol. B Biol. 198, 111559 (2019).

    Article 

    Google Scholar
     

  • Abdelsattar, A. S., Eid, A., Rezk, N., Hussein, A. H. & El-Shibiny, A. Biosynthesis of gold nanoparticles using ethanolic propolis extract for methylene blue and Rhodamine-B removal. Materials Letters 327, 133060 (2022).

    Article 

    Google Scholar
     

  • Wahab, R. et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Coll. Surf. B Biointerfaces 117, 267–276 (2014).

    Article 

    Google Scholar
     

  • Van Meerloo, J., Kaspers, G. J. L. & Cloos, J. Cell Sensitivity Assays: The MTT Assay. In Cancer Cell Culture (ed. Cree, I. A.) 237–245 (Humana Press, 2011).

    Chapter 

    Google Scholar
     

  • Hu, M. et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Kreuter, J. Liposomes and nanoparticles as vehicles for antibiotics. Infection 19, S224–S228 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, C. Y., Yan, Z. & Goodman, D. W. On the origin of the unique properties of supported au nanoparticles. J. Am. Chem. Soc. 128, 6341–6346 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82, 412–417 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Cuenca, A. G. et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107, 459–466 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Waychunas, G. A. & Zhang, H. Structure, chemistry, and properties of mineral nanoparticles. Elements 4, 381–387 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Talebian, N., Amininezhad, S. M. & Doudi, M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B Biology 120, 66–73 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Stanković, A., Dimitrijević, S. & Uskoković, D. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Coll. Surf. B Biointerfaces 102, 21–28 (2013).

    Article 

    Google Scholar
     

  • Yang, X. et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 46, 1119–1127 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kvítek, L. et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 112, 5825–5834 (2008).

    Article 

    Google Scholar
     

  • Botteon, C. E. A. et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 11, 1974 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andleeb, A. et al. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 13, 2818 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajeshkumar, S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 14, 195–202 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khandanlou, R., Murthy, V., Saranath, D. & Damani, H. Synthesis and characterization of gold-conjugated Backhousia citriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines. J. Mater. Sci. 53, 3106–3118 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sarala, E., Madhukara Naik, M., Vinuth, M., Rami Reddy, Y. V. & Sujatha, H. R. Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. J. Mater. Sci. Mater. Electron. 31, 8589–8596 (2020).

    Article 

    Google Scholar
     

  • Nguyen, L. A. T. et al. Green synthesis of silver nanoparticles using Callisia fragrans leaf extract and its anticancer activity against MCF-7, HepG2, KB, LU-1, and MKN-7 cell lines. Green Process. Synth. 12, 20230024 (2023).

    Article 

    Google Scholar
     

  • Kavaz, D., Abubakar, A. L., Rizaner, N. & Umar, H. Biosynthesized ZnO nanoparticles using Albizia lebbeck extract induced biochemical and morphological alterations in wistar rats. Molecules 26, 3864 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govindasamy, G. A., Mydin, R. B., Effendy, W. N. F. W. E. & Sreekantan, S. Novel dual-ionic ZnO/CuO embedded in porous chitosan biopolymer for wound dressing application: Physicochemical, bactericidal, cytocompatibility and wound healing profiles. Mater. Today Commun. 33, 104545 (2022).

    Article 

    Google Scholar
     

  • Abdelsattar, A. S., Kamel, A. G., Elbermawy, Y., Gamal, H. & El-Shibiny, A. The selective cytotoxicity effect of biosynthesized zinc oxide nanoparticles using honey. Mater. Lett. 367, 136657 (2024).

    Article 

    Google Scholar