Green synthesis of nanohydroxyapatite with Elaeagnus angustifolia L. extract as a metronidazole nanocarrier for in vitro pulpitis model treatment – Scientific Reports

  • Wang, W., Wang, X., Li, L. & Liu, Y. Anti-inflammatory and repairing effects of mesoporous silica-loaded metronidazole composite hydrogel on human dental pulp cells. J. Healthc. Eng. 2022, 6774075 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farges, J.-C. et al. Odontoblast control of dental pulp inflammation triggered by cariogenic bacteria. Front. Physiol. 4, 326 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galler, K. M., Weber, M., Korkmaz, Y., Widbiller, M. & Feuerer, M. Inflammatory response mechanisms of the dentine–pulp complex and the periapical tissues. Int. J. Mol. Sci. 22, 1480 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagle, D., Reader, A., Beck, M. & Weaver, J. Effect of systemic penicillin on pain in untreated irreversible pulpitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 90, 636–640 (2000).

    CAS 

    Google Scholar
     

  • Oshima, M., Ishida, K., Morita, R., Saito, M. & Tsuji, T. Tooth regenerative therapy: Tooth tissue repair and whole tooth replacement. Encycl. Biomed. Eng. 1–3, 686–695 (2019).


    Google Scholar
     

  • Bogen, G. & Chandler, N. P. Vital pulp therapy. Ingle’s Endod. 6, 1310–1329 (2008).


    Google Scholar
     

  • Ducret, M. et al. Immunophenotyping reveals the diversity of human dental pulp mesenchymal stromal cells in vivo and their evolution upon in vitro amplification. Front. Physiol. 7, 512 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamada, Y., Nakamura-Yamada, S., Kusano, K. & Baba, S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci. 20, 1132 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakhtiar, H. et al. The role of stem cell therapy in regeneration of dentine-pulp complex: A systematic review. Prog. Biomater. 7, 249–268 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sui, B. et al. Pulp stem cell–mediated functional pulp regeneration. J. Dent. Res. 98, 27–35 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Habib, M. & Huang, G. T.-J. Dental mesenchymal stem cells: dental pulp stem cells, periodontal ligament stem cells, apical papilla stem cells, and primary teeth stem cells—isolation, characterization, and expansion for tissue engineering. Odontogenesis Methods Protoc. 59–76 (2019).

  • Farges, J.-C. et al. Dental pulp defence and repair mechanisms in dental caries. Mediat. Inflamm. 2015, 230251 (2015).


    Google Scholar
     

  • Makvandi, P. et al. Drug delivery (nano) platforms for oral and dental applications: Tissue regeneration, infection control, and cancer management. Adv. Sci. 8, 2004014 (2021).

    CAS 

    Google Scholar
     

  • Padmanabhan, V. P., Kulandaivelu, R., Rasumani, S., Balakrishnan, S. & Thangavel, R. Green synthesis of hydroxyapatite nano rods using camellia sinesis (white tea extract). Int. J. Innov. Res. Sci. Eng. (2014).

  • Gopi, D., Kanimozhi, K., Bhuvaneshwari, N., Indira, J. & Kavitha, L. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 589–597 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Kalaiselvi, V., Mathammal, R., Vijayakumar, S. & Vaseeharan, B. Microwave assisted green synthesis of Hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications. Int. J. Vet. Sci. Med. 6, 286–295 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huston, M., DeBella, M., DiBella, M. & Gupta, A. Green synthesis of nanomaterials. Nanomaterials 11, 2130 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shebi, A. & Lisa, S. Pectin mediated synthesis of nano hydroxyapatite-decorated poly (lactic acid) honeycomb membranes for tissue engineering. Carbohydr. Polym. 201, 39–47 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Hokmabad, V. R. et al. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering. Front. Chem. Sci. Eng. 13, 108–119 (2019).

    CAS 

    Google Scholar
     

  • Sahan, Y. et al. Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) Flour. I physicochemical, sensorial and textural properties. J. Agric. Sci. 5, 160 (2013).


    Google Scholar
     

  • Ebrahimi, A. A., Nikniaz, Z., Ostadrahimi, A., Mahdavi, R. & Nikniaz, L. The effect of Elaeagnus angustifolia L. whole fruit and medulla powder on women with osteoarthritis of the knee: A randomized controlled clinical trial. Eur. J. Integr. Med. 6, 672–679 (2014).


    Google Scholar
     

  • Serafini, M., Peluso, I. & Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 69, 273–278 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Hamidpour, R. et al. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J. Tradit. Complement. Med. 7, 24–29 (2017).

    PubMed 

    Google Scholar
     

  • Safitri, N., Rauf, N. & Tahir, D. Enhancing drug loading and release with hydroxyapatite nanoparticles for efficient drug delivery: A review synthesis methods, surface ion effects, and clinical prospects. J. Drug Deliv. Sci. Technol. 90, 105092 (2023).

    CAS 

    Google Scholar
     

  • Bapat, R. A. et al. The use of nanoparticles as biomaterials in dentistry. Drug Discov. Today 24, 85–98 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pokhrel, S. Hydroxyapatite: Preparation, properties and its biomedical applications. Adv. Chem. Eng. Sci. 8, 225 (2018).

    CAS 

    Google Scholar
     

  • Lara-Ochoa, S., Ortega-Lara, W. & Guerrero-Beltrán, C. E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics 13, 1642 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epple, M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 77, 1–14 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Murgia, D. et al. Development of a multifunctional bioerodible nanocomposite containing metronidazole and curcumin to apply on L-PRF clot to promote tissue regeneration in dentistry. Biomedicines 8, 425 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzo, A. et al. Effect of metronidazole and modulation of cytokine production on human periodontal ligament cells. Int. Immunopharmacol. 10, 744–750 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Bottino, M. et al. Bioactive nanofibrous scaffolds for regenerative endodontics. J. Dent. Res. 92, 963–969 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azaryan, E. et al. Effects of hydroxyapatite nanorods prepared through Elaeagnus angustifolia extract on modulating immunomodulatory/dentin–pulp regeneration genes in DPSCs. Odontology 111, 461–473 (2023).

    CAS 

    Google Scholar
     

  • Gronthos, S., Arthur, A., Bartold, P. M. & Shi, S. A method to isolate and culture expand human dental pulp stem cells. Mesenchymal Stem Cell Assays Appl. 107–121 (2011).

  • Ayadilord, M. et al. Immunomodulatory effects of phytosomal curcumin on related-micro RNAs, CD200 expression and inflammatory pathways in dental pulp stem cells. Cell Biochem. Funct. 39, 886–895 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Steckiewicz, K. P. et al. Silver nanoparticles as chlorhexidine and metronidazole drug delivery platforms: Their potential use in treating periodontitis [Corrigendum]. Int. J. Nanomed. 18, 1613–1614 (2023).


    Google Scholar
     

  • Liu, X. et al. One-step treatment of periodontitis based on a core-shell micelle-in-nanofiber membrane with time-programmed drug release. J. Control. Release 320, 201–213 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ustiashvili, M., Kordzaia, D., Mamaladze, M., Jangavadze, M. & Sanodze, L. Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis. Georgian Med. News 234, 19–24 (2014).


    Google Scholar
     

  • De Lama-Odría, M. D. C., Valle, L. J. D. & Puiggalí, J. Lanthanides-substituted hydroxyapatite for biomedical applications. Int. J. Mol. Sci. 24, 3446 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajabnejadkeleshteri, A., Kamyar, A., Khakbiz, M. & Basiri, H. Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem. J. 153, 104485 (2020).

    CAS 

    Google Scholar
     

  • Varadarajan, V., Varsha, M., Vijayasekaran, K. & Shankar, S. V. in AIP Conference Proceedings (AIP Publishing).

  • Wen, Y. et al. Improvement of drug-loading properties of hydroxyapatite particles using triethylamine as a capping agent: A novel approach. Crystals 11, 703 (2021).

    CAS 

    Google Scholar
     

  • Horvat, G., Pantić, M., Knez, Ž & Novak, Z. A brief evaluation of pore structure determination for bioaerogels. Gels 8, 438 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orooji, Y., Mortazavi-Derazkola, S., Ghoreishi, S. M., Amiri, M. & Salavati-Niasari, M. Mesopourous Fe3O4@ SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 400, 123140 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, W. et al. Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors. ACS Appl. Mater. Interfaces 10, 7832–7840 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Binesh, N., Farhadian, N. & Mohammadzadeh, A. Enhanced antibacterial activity of uniform and stable chitosan nanoparticles containing metronidazole against anaerobic bacterium of Bacteroides fragilis. Colloids Surf. B Biointerfaces 202, 111691 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Sabbagh, H. A. K. et al. Application of multiple regression analysis in optimization of metronidazole-chitosan nanoparticles. J. Polym. Res. 26, 1–14 (2019).

    CAS 

    Google Scholar
     

  • Michelle Hurlbutt, R., Novy, B. & Young, D. Dental caries: A pH-mediated disease. Mouth 10, 11 (2010).


    Google Scholar
     

  • Liu, Q. et al. Release behavior of folic acid grafted hollow hydroxyapatite as drug carrier. Adv. Polym. Technol. 2019, 9562437 (2019).


    Google Scholar
     

  • Li, Y. et al. Accelerating periodontal regeneration through injectable hydrogel-enabled sequential delivery of nanoceria and erythropoietin. Mater. Des. 225, 111540 (2023).

    CAS 

    Google Scholar
     

  • Chen, W., Guan, Y., Xu, F. & Jiang, B. 4-Methylumbelliferone promotes the migration and odontogenetic differentiation of human dental pulp stem cells exposed to lipopolysaccharide in vitro. Cell Biol. Int. 45, 1415–1422 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bindal, P., Ramasamy, T. S., Kasim, N. H. A., Gnanasegaran, N. & Chai, W. L. Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol. Int. 42, 832–840 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 27, 1176–1189 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell. Mol. Immunol. 17, 753–764 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Standiford, T. J. & Deng, J. C. in Encyclopedia of Respiratory Medicine (eds G. J. Laurent & S. D. Shapiro) 373–377 (Academic Press, 2006).

  • Chen, J., Xu, H., Xia, K., Cheng, S. & Zhang, Q. Resolvin E1 accelerates pulp repair by regulating inflammation and stimulating dentin regeneration in dental pulp stem cells. Stem Cell Res. Ther. 12, 1–14 (2021).


    Google Scholar
     

  • Li, J.-Y. et al. FGF-21 elevated IL-10 production to correct LPS-induced inflammation. Inflammation 41, 751–759 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Youssef, A.-R. et al. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 19, 1–9 (2019).


    Google Scholar
     

  • Lee, S.-I. et al. Stimulation of odontogenesis and angiogenesis via bioactive nanocomposite calcium phosphate cements through integrin and VEGF signaling pathways. J. Biomed. Nanotechnol. 12, 1048–1062 (2016).

    CAS 
    PubMed 

    Google Scholar