
Wang, W., Wang, X., Li, L. & Liu, Y. Anti-inflammatory and repairing effects of mesoporous silica-loaded metronidazole composite hydrogel on human dental pulp cells. J. Healthc. Eng. 2022, 6774075 (2022).
Farges, J.-C. et al. Odontoblast control of dental pulp inflammation triggered by cariogenic bacteria. Front. Physiol. 4, 326 (2013).
Galler, K. M., Weber, M., Korkmaz, Y., Widbiller, M. & Feuerer, M. Inflammatory response mechanisms of the dentine–pulp complex and the periapical tissues. Int. J. Mol. Sci. 22, 1480 (2021).
Nagle, D., Reader, A., Beck, M. & Weaver, J. Effect of systemic penicillin on pain in untreated irreversible pulpitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 90, 636–640 (2000).
Oshima, M., Ishida, K., Morita, R., Saito, M. & Tsuji, T. Tooth regenerative therapy: Tooth tissue repair and whole tooth replacement. Encycl. Biomed. Eng. 1–3, 686–695 (2019).
Bogen, G. & Chandler, N. P. Vital pulp therapy. Ingle’s Endod. 6, 1310–1329 (2008).
Ducret, M. et al. Immunophenotyping reveals the diversity of human dental pulp mesenchymal stromal cells in vivo and their evolution upon in vitro amplification. Front. Physiol. 7, 512 (2016).
Yamada, Y., Nakamura-Yamada, S., Kusano, K. & Baba, S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci. 20, 1132 (2019).
Bakhtiar, H. et al. The role of stem cell therapy in regeneration of dentine-pulp complex: A systematic review. Prog. Biomater. 7, 249–268 (2018).
Sui, B. et al. Pulp stem cell–mediated functional pulp regeneration. J. Dent. Res. 98, 27–35 (2019).
Al-Habib, M. & Huang, G. T.-J. Dental mesenchymal stem cells: dental pulp stem cells, periodontal ligament stem cells, apical papilla stem cells, and primary teeth stem cells—isolation, characterization, and expansion for tissue engineering. Odontogenesis Methods Protoc. 59–76 (2019).
Farges, J.-C. et al. Dental pulp defence and repair mechanisms in dental caries. Mediat. Inflamm. 2015, 230251 (2015).
Makvandi, P. et al. Drug delivery (nano) platforms for oral and dental applications: Tissue regeneration, infection control, and cancer management. Adv. Sci. 8, 2004014 (2021).
Padmanabhan, V. P., Kulandaivelu, R., Rasumani, S., Balakrishnan, S. & Thangavel, R. Green synthesis of hydroxyapatite nano rods using camellia sinesis (white tea extract). Int. J. Innov. Res. Sci. Eng. (2014).
Gopi, D., Kanimozhi, K., Bhuvaneshwari, N., Indira, J. & Kavitha, L. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 589–597 (2014).
Kalaiselvi, V., Mathammal, R., Vijayakumar, S. & Vaseeharan, B. Microwave assisted green synthesis of Hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications. Int. J. Vet. Sci. Med. 6, 286–295 (2018).
Huston, M., DeBella, M., DiBella, M. & Gupta, A. Green synthesis of nanomaterials. Nanomaterials 11, 2130 (2021).
Shebi, A. & Lisa, S. Pectin mediated synthesis of nano hydroxyapatite-decorated poly (lactic acid) honeycomb membranes for tissue engineering. Carbohydr. Polym. 201, 39–47 (2018).
Hokmabad, V. R. et al. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering. Front. Chem. Sci. Eng. 13, 108–119 (2019).
Sahan, Y. et al. Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) Flour. I physicochemical, sensorial and textural properties. J. Agric. Sci. 5, 160 (2013).
Ebrahimi, A. A., Nikniaz, Z., Ostadrahimi, A., Mahdavi, R. & Nikniaz, L. The effect of Elaeagnus angustifolia L. whole fruit and medulla powder on women with osteoarthritis of the knee: A randomized controlled clinical trial. Eur. J. Integr. Med. 6, 672–679 (2014).
Serafini, M., Peluso, I. & Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 69, 273–278 (2010).
Hamidpour, R. et al. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J. Tradit. Complement. Med. 7, 24–29 (2017).
Safitri, N., Rauf, N. & Tahir, D. Enhancing drug loading and release with hydroxyapatite nanoparticles for efficient drug delivery: A review synthesis methods, surface ion effects, and clinical prospects. J. Drug Deliv. Sci. Technol. 90, 105092 (2023).
Bapat, R. A. et al. The use of nanoparticles as biomaterials in dentistry. Drug Discov. Today 24, 85–98 (2019).
Pokhrel, S. Hydroxyapatite: Preparation, properties and its biomedical applications. Adv. Chem. Eng. Sci. 8, 225 (2018).
Lara-Ochoa, S., Ortega-Lara, W. & Guerrero-Beltrán, C. E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics 13, 1642 (2021).
Epple, M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 77, 1–14 (2018).
Murgia, D. et al. Development of a multifunctional bioerodible nanocomposite containing metronidazole and curcumin to apply on L-PRF clot to promote tissue regeneration in dentistry. Biomedicines 8, 425 (2020).
Rizzo, A. et al. Effect of metronidazole and modulation of cytokine production on human periodontal ligament cells. Int. Immunopharmacol. 10, 744–750 (2010).
Bottino, M. et al. Bioactive nanofibrous scaffolds for regenerative endodontics. J. Dent. Res. 92, 963–969 (2013).
Azaryan, E. et al. Effects of hydroxyapatite nanorods prepared through Elaeagnus angustifolia extract on modulating immunomodulatory/dentin–pulp regeneration genes in DPSCs. Odontology 111, 461–473 (2023).
Gronthos, S., Arthur, A., Bartold, P. M. & Shi, S. A method to isolate and culture expand human dental pulp stem cells. Mesenchymal Stem Cell Assays Appl. 107–121 (2011).
Ayadilord, M. et al. Immunomodulatory effects of phytosomal curcumin on related-micro RNAs, CD200 expression and inflammatory pathways in dental pulp stem cells. Cell Biochem. Funct. 39, 886–895 (2021).
Steckiewicz, K. P. et al. Silver nanoparticles as chlorhexidine and metronidazole drug delivery platforms: Their potential use in treating periodontitis [Corrigendum]. Int. J. Nanomed. 18, 1613–1614 (2023).
Liu, X. et al. One-step treatment of periodontitis based on a core-shell micelle-in-nanofiber membrane with time-programmed drug release. J. Control. Release 320, 201–213 (2020).
Ustiashvili, M., Kordzaia, D., Mamaladze, M., Jangavadze, M. & Sanodze, L. Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis. Georgian Med. News 234, 19–24 (2014).
De Lama-Odría, M. D. C., Valle, L. J. D. & Puiggalí, J. Lanthanides-substituted hydroxyapatite for biomedical applications. Int. J. Mol. Sci. 24, 3446 (2023).
Rajabnejadkeleshteri, A., Kamyar, A., Khakbiz, M. & Basiri, H. Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem. J. 153, 104485 (2020).
Varadarajan, V., Varsha, M., Vijayasekaran, K. & Shankar, S. V. in AIP Conference Proceedings (AIP Publishing).
Wen, Y. et al. Improvement of drug-loading properties of hydroxyapatite particles using triethylamine as a capping agent: A novel approach. Crystals 11, 703 (2021).
Horvat, G., Pantić, M., Knez, Ž & Novak, Z. A brief evaluation of pore structure determination for bioaerogels. Gels 8, 438 (2022).
Orooji, Y., Mortazavi-Derazkola, S., Ghoreishi, S. M., Amiri, M. & Salavati-Niasari, M. Mesopourous Fe3O4@ SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 400, 123140 (2020).
Sun, W. et al. Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors. ACS Appl. Mater. Interfaces 10, 7832–7840 (2018).
Binesh, N., Farhadian, N. & Mohammadzadeh, A. Enhanced antibacterial activity of uniform and stable chitosan nanoparticles containing metronidazole against anaerobic bacterium of Bacteroides fragilis. Colloids Surf. B Biointerfaces 202, 111691 (2021).
Sabbagh, H. A. K. et al. Application of multiple regression analysis in optimization of metronidazole-chitosan nanoparticles. J. Polym. Res. 26, 1–14 (2019).
Michelle Hurlbutt, R., Novy, B. & Young, D. Dental caries: A pH-mediated disease. Mouth 10, 11 (2010).
Liu, Q. et al. Release behavior of folic acid grafted hollow hydroxyapatite as drug carrier. Adv. Polym. Technol. 2019, 9562437 (2019).
Li, Y. et al. Accelerating periodontal regeneration through injectable hydrogel-enabled sequential delivery of nanoceria and erythropoietin. Mater. Des. 225, 111540 (2023).
Chen, W., Guan, Y., Xu, F. & Jiang, B. 4-Methylumbelliferone promotes the migration and odontogenetic differentiation of human dental pulp stem cells exposed to lipopolysaccharide in vitro. Cell Biol. Int. 45, 1415–1422 (2021).
Bindal, P., Ramasamy, T. S., Kasim, N. H. A., Gnanasegaran, N. & Chai, W. L. Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol. Int. 42, 832–840 (2018).
Zhou, X. et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 27, 1176–1189 (2019).
Li, M. et al. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell. Mol. Immunol. 17, 753–764 (2020).
Standiford, T. J. & Deng, J. C. in Encyclopedia of Respiratory Medicine (eds G. J. Laurent & S. D. Shapiro) 373–377 (Academic Press, 2006).
Chen, J., Xu, H., Xia, K., Cheng, S. & Zhang, Q. Resolvin E1 accelerates pulp repair by regulating inflammation and stimulating dentin regeneration in dental pulp stem cells. Stem Cell Res. Ther. 12, 1–14 (2021).
Li, J.-Y. et al. FGF-21 elevated IL-10 production to correct LPS-induced inflammation. Inflammation 41, 751–759 (2018).
Youssef, A.-R. et al. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 19, 1–9 (2019).
Lee, S.-I. et al. Stimulation of odontogenesis and angiogenesis via bioactive nanocomposite calcium phosphate cements through integrin and VEGF signaling pathways. J. Biomed. Nanotechnol. 12, 1048–1062 (2016).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-65582-4