Search
Close this search box.

Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies – Scientific Reports

  • Lapierre, É., Monthony, A. S. & Torkamaneh, D. Genomics-based taxonomy to clarify cannabis classification. Genome 66, 202–211 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Clarke, R. & Merlin, M. Cannabis: Evolution and Ethnobotany. (Univ of California Press, 2016).

  • Hurgobin, B. et al. Recent advances in Cannabis sativa genomics research. New Phytol. 230, 73–89 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, C. The Canadian Cannabis Act legalizes and regulates recreational cannabis use in 2018. Health Policy New York. 122, 205–209 (2018).

    Article 

    Google Scholar
     

  • Welling, M. T. et al. A belated green revolution for Cannabis: Virtual genetic resources to fast-track cultivar development. Front. Plant Sci. 7, 205761 (2016).

    Article 

    Google Scholar
     

  • Martínez, V. et al. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful nutraceuticals?. Int. J. Mol. Sci. 21, 3067 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torkamaneh, D. & Jones, A. M. P. Cannabis, the multibillion dollar plant that no genebank wanted. Genome 65, 1–5 (2021).

    Article 

    Google Scholar
     

  • Impact on the Canadian economy. (2023). Available at: https://ised-isde.canada.ca/site/competition-bureau-canada/en/how-we-foster-competition/education-and-outreach/planting-seeds-competition. (Accessed: 5th October 2023)

  • Hesami, M. et al. Recent advances in cannabis biotechnology. Ind. Crops Prod. 158, 113026 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hanuš, L. O., Meyer, S. M., Muñoz, E., Taglialatela-Scafati, O. & Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 33, 1357–1392 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Booth, J. K. & Bohlmann, J. Terpenes in Cannabis sativa—From plant genome to humans. Plant Sci. 284, 67–72 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovalchuk, I. et al. The genomics of cannabis and its close relatives. Annu. Rev. Plant Biol. 71, 713–739 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grassa, C. J. et al. A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytol. 230, 1665–1679 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laverty, K. U. et al. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res. 29, 146–156 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grassa, C. J. et al. A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content. bioRxiv. https://doi.org/10.1101/458083 (2018).

    Article 

    Google Scholar
     

  • Gao, S. et al. A high-quality reference genome of wild Cannabis sativa. Hortic. Res. 7, 73. https://doi.org/10.1038/s41438-020-0295-3 (2020).

  • Maoz, T. Making cannabis history in 2020. (2020). Available at: https://nrgene.com/making-cannabis-history-in-2020/. (Accessed: 6th October 2023)

  • Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: Advances and applications. Nat. Rev. Genet. 13, 85–96 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Schwabe, A. L. & McGlaughlin, M. E. Genetic tools weed out misconceptions of strain reliability in Cannabis sativa: Implications for a budding industry. J. Cannabis Res. 1, 1–16 (2019).

    Article 

    Google Scholar
     

  • Metzker, M. L. Sequencing technologies the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. & Zhang, Z. GAPIT version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 19, 629–640 (2021).

    Article 

    Google Scholar
     

  • Yin, L. et al. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 19, 619–628 (2021).

    Article 

    Google Scholar
     

  • Torkamaneh, D. & Belzile, F. Genome-Wide Association Studies. 2481, (Springer US, 2022).

  • Bakker, E., Holloway, A., K Waterman – US Patent App. 17/665, 500 & 2023, U. Autoflowering Markers. Google Patents (2021).

  • Welling, M. T. et al. An extreme-phenotype genome-wide association study identifies candidate cannabinoid pathway genes in Cannabis. Sci. Rep. 10, 1–14 (2020).

    Article 

    Google Scholar
     

  • Song, K., Li, L. & Zhang, G. Coverage recommendation for genotyping analysis of highly heterologous species using next-generation sequencing technology. Sci. Rep. 6, 1–7 (2016).


    Google Scholar
     

  • Scariolo, F. et al. Genotyping analysis by rad-seq reads is useful to assess the genetic identity and relationships of breeding lines in lavender species aimed at managing plant variety protection. Genes (Basel). 12, 1656 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonah, H. et al. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8, 1–9 (2013).

    Article 

    Google Scholar
     

  • Torkamaneh, D., Laroche, J., Boyle, B., Hyten, D. L. & Belzile, F. A bumper crop of SNPs in soybean through high-density genotyping-by-sequencing (HD-GBS). Plant Biotechnol. J. 19, 860–862 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poland, J. A. & Rife, T. W. Genotyping‐by‐sequencing for plant breeding and genetics. Plant Genome 5. https://doi.org/10.3835/plantgenome2012.05.0005 (2012).

  • Sun, J. et al. Genome-wide association study of salt tolerance at the germination stage in hemp. Euphytica 219, 1–16 (2023).

    Article 

    Google Scholar
     

  • Petit, J. et al. Elucidating the genetic architecture of fiber quality in hemp (Cannabis sativa L.) using a genome-wide association study. Front. Genet. 11, 566314. https://doi.org/10.3389/fgene.2020.566314 (2020).

  • Petit, J., Salentijn, E. M. J., Paulo, M. J., Denneboom, C. & Trindade, L. M. Genetic architecture of flowering time and sex determination in hemp (Cannabis sativa L): A genome-wide association study. Front. Plant Sci. 11, 569958 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watts, S. et al. Cannabis labelling is associated with genetic variation in terpene synthase genes. Nat. Plants. 7, 1330–1334 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 363, 557–572 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lapierre, É., de Ronne, M., Boulanger, R. & Torkamaneh, D. Comprehensive phenotypic characterization of diverse drug-type cannabis varieties from the Canadian Legal Market. Plants. 12, 3756 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piluzza, G., Delogu, G., Cabras, A., Marceddu, S. & Bullitta, S. Differentiation between fiber and drug types of hemp (Cannabis sativa L) from a collection of wild and domesticated accessions. Genet. Resour. Crop Evol. 60, 2331–2342 (2013).

    Article 

    Google Scholar
     

  • Jannink, J. L., Lorenz, A. J. & Iwata, H. Genomic selection in plant breeding: From theory to practice. Briefings Funct. Genom. Proteom. 9, 166–177 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Huang, M., Liu, X., Zhou, Y., Summers, R. M. & Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 8, 1–12 (2019).

    Article 
    ADS 

    Google Scholar
     

  • R Core Team. R: The R Project for Statistical Computing. (2021). Available at: https://www.r-project.org/. (Accessed: 10th June 2023)

  • Aboul-Maaty, N.A.-F. & Oraby, H.A.-S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Natl. Res. Cent. 43, 1–10 (2019).

    Article 

    Google Scholar
     

  • Torkamaneh, D., Laroche, J. & Belzile, F. Fast-gbs v2.0: An analysis toolkit for genotyping-by-sequencing data. Genome 63, 577–581 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, 1–4 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NCBI Cannabis sativa Annotation Release 100. (2019). Available at: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Cannabis_sativa/100/. (Accessed: 11th October 2023)

  • Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76, 5269–5273 (1979).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remington, D. L. et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA. 98, 11479–11484 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raj, A., Stephens, M. & Pritchard, J. K. FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 1–15 (2010).

    Article 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).

    Article 

    Google Scholar
     

  • Cheng, C. Y. et al. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torkamaneh, D. & Belzile, F. Scanning and filling: Ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data. PLoS One 10, e0131533 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torkamaneh, D. et al. NanoGBS: A miniaturized procedure for GBS library preparation. Front. Genet. 11, 1–8 (2020).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genom. 16, 1–11 (2015).


    Google Scholar
     

  • Viana, J. P. G. et al. Impact of multiple selective breeding programs on genetic diversity in soybean germplasm. Theor. Appl. Genet. 135, 1591–1602 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Geng, X., Zhang, H., Shen, H. & Yang, W. Association and genetic identification of loci for four fruit traits in tomato using InDel markers. Front. Plant Sci. 8, 275267 (2017).


    Google Scholar
     

  • Ren, G. et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 7, 2286–2302 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Torkamaneh, D. et al. Soybean (Glycine max) Haplotype Map (GmHapMap): A universal resource for soybean translational and functional genomics. Plant Biotechnol. J. 19, 324–334 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature. 557, 43–49 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chia, J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44, 803–807 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawler, J. et al. The genetic structure of marijuana and hemp. PLoS One 10, e0133292 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, R. C. et al. Genomic and chemical diversity in Cannabis. CRC. Crit. Rev. Plant Sci. 35, 349–363 (2016).

    Article 

    Google Scholar
     

  • Soorni, A., Fatahi, R., Haak, D. C., Salami, S. A. & Bombarely, A. Assessment of genetic diversity and population structure in Iranian Cannabis Germplasm. Sci. Rep. 7, 1–10 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Genetic diversity and population structure of cannabis based on the genome-wide development of simple sequence repeat markers. Front. Genet. 11, 543438 (2020).


    Google Scholar
     

  • Clarke, R. C. & Merlin, M. D. Cannabis domestication, breeding history, present-day genetic diversity, and future prospects. CRC. Crit. Rev. Plant Sci. 35, 293–327 (2016).

    Article 

    Google Scholar
     

  • Lye, Z. N. & Purugganan, M. D. Copy number variation in domestication. Trends Plant Sci. 24, 352–365 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Springer, N. M. Epigenetics and crop improvement. Trends Genet. 29, 241–247 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gill, R. A. et al. On the role of transposable elements in the regulation of gene expression and subgenomic interactions in crop genomes. CRC. Crit. Rev. Plant Sci. 40, 157–189 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Alonge, M. et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. (2020). https://doi.org/10.1016/j.cell.2020.05.021

  • Liseron-Monfils, C. & Ware, D. Revealing gene regulation and associations through biological networks. Curr. Plant Biol. 3–4, 30–39 (2015).

    Article 

    Google Scholar
     

  • Smýkal, P., Nelson, M. N., Berger, J. D. & Von Wettberg, E. J. B. The impact of genetic changes during crop domestication. Agronomy. 8, 119 (2018).

    Article 

    Google Scholar
     

  • Schwabe, A. L., Hansen, C. J., Hyslop, R. M. & McGlaughlin, M. E. Comparative genetic structure of cannabis sativa including federally produced, wild collected, and cultivated samples. Front. Plant Sci. 12, 675770 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Ronne, M. et al. Mapping of partial resistance to Phytophthora sojae in soybean PIs using whole-genome sequencing reveals a major QTL. Plant Genome 15, e20184 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhong, H. et al. Uncovering the genetic mechanisms regulating panicle architecture in rice with GPWAS and GWAS. BMC Genom. 22, 1–13 (2021).


    Google Scholar
     

  • Cui, Z. et al. Denser markers and advanced statistical method identified more genetic loci associated with husk traits in maize. Sci. Rep. 10, (2020).

  • Kaler, A. S., Gillman, J. D., Beissinger, T. & Purcell, L. C. Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front. Plant Sci. 10, 1794. https://doi.org/10.3389/fpls.2019.01794 (2020).

    Article 

    Google Scholar
     

  • Izquierdo, P., Kelly, J. D., Beebe, S. E. & Cichy, K. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean. Plant Genome 16, e20328 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar