Genetic diversity, chemical constituents and anatomical analysis of eight popular Olive (Olea europaea L.) cultivars in Al-Jouf region, Saudi Arabia – Scientific Reports

  • Hassouna, V. Virgin olive oil 23 (Demand GmbH, Norderstedt, Germany, 2010).


    Google Scholar
     

  • FAOSTAT. Food and agriculture organization of United Nations. (2014).

  • Barranco, D. & Rallo, L. Olive cultivars in Spain. HortTechnology 10(1), 107–110 (2000).

    Article 

    Google Scholar
     

  • Bartolini, G. et al. Olive germplasm: Cultivars and world-wide collections (FAO, Rome, Italy, 1998).


    Google Scholar
     

  • Guerfel, M. et al. Effect of location on virgin olive oils of the two main Tunisian olive cultivars. Eur. J. Lipid Sci. Technol. 111(9), 926–932 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Youssef, O. et al. Effect of cultivar on minor components in Tunisia olive fruits cultivated in microclimate. J. Hortic. For. 3(1), 13–20 (2011).


    Google Scholar
     

  • Alhaithloul, H. A. S., Attia, M. S. & Abdein, M. A. Dramatic biochemical and anatomical changes in eggplant due to infection with Alternaria solani causing early blight disease. Int. J. Bot. Stud. 4(5), 55–60 (2019).


    Google Scholar
     

  • Zhang, J. et al. Potential of start codon targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions. Molecules 20(4), 5987–6001 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Randhawa, H. S. et al. Application of molecular markers to wheat breeding in C anada. Plant Breed. 132(5), 458–471 (2013).

    Article 
    CAS 

    Google Scholar
     

  • El-Adl, A. et al. Molecular genetic evaluation of seven varieties of summer squash. J. Am. Sci. 8(5), 41–48 (2012).


    Google Scholar
     

  • Abd El-Naby, Z. M., Nabila, A. M. & Shaban, K. A. Estimation of soil fertility and yield productivity of three alfalfa (Medicago sativa L) cultivars under sahl El-Tina saline soils conditions. Life Sci. J. Acta Zhengzhou Univ. Overseas Edit. 10(1), 2082–2095 (2013).


    Google Scholar
     

  • Etminan, A. et al. Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol. Biotechnol. Equip. 30(6), 1075–1081 (2016).

    Article 

    Google Scholar
     

  • Mohamed, S. E., Abdein, M. A. & Hikal, D. M. Molecular genetic polymorphism, morphological and the effect of peels as natural antioxidants in some squash cultivars. Researcher 10(3), 97–104 (2018).


    Google Scholar
     

  • Alqahtani, M. M., Abdein, M. A. & AbouEl-Leel, O. F. Morphological and molecular genetic assessment of some Thymus species. Biosci. Biotechnol. Res. Asia 17(1), 103–113 (2020).

    Article 

    Google Scholar
     

  • Darrag, H. M. et al. Exploring Ocimum basilicum’s secondary metabolites: Inhibition and molecular docking against rhynchophorus ferrugineus for optimal action. Plants 13(4), 491 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Khayri, J. M. et al. Genetic and morphological diversity assessment of five kalanchoe genotypes by SCoT, ISSR and RAPD-PCR markers. Plants 11(13), 1722 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdein, M. A. E. H. Genetic diversity between pumpkin accessions growing in the Northern Border Region in Saudi Arabia based on biochemical and molecular parameters. Egypt. J. Bot. 58(3), 463–476 (2018).


    Google Scholar
     

  • Abdein, M. A. et al. Assessment of genetic diversity in summer squash genotypes using some yield traits and DNA markers analysis under Sinai conditions. J. Plant Prod. Sci. 10(1), 13–29 (2021).


    Google Scholar
     

  • El-Mansy, A. B. et al. Genetic diversity analysis of tomato (Solanum lycopersicum L.) with morphological, cytological, and molecular markers under heat stress. Horticulturae 7(4), 65 (2021).

    Article 

    Google Scholar
     

  • Rai, M. K. Start codon targeted (SCoT) polymorphism marker in plant genome analysis: Current status and prospects. Planta 257(2), 34 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamimi, Z., Noormohammadi, Z. & Farahani, F. Genetic structure and SCoT marker-based differentiation of indigenous grape, Vitis venifera L. cultivars of Iran. The Nucleus 66(1), 95–101 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Guo, D. L., Zhang, J. Y. & Liu, C. H. Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep. 39, 5307–5313 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sofalian, O., Chaparzadeh, N. & Dolati, M. Genetic diversity in spring wheat landraces from northwest of Iran assessed by ISSR markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(2), 252–256 (2009).

    CAS 

    Google Scholar
     

  • Pasqualone, A. et al. Use of ISSR markers for cultivar identification in durum wheat. CIHEAM Opt. Mediterr. 40, 157–161 (2000).


    Google Scholar
     

  • Abou-Deif, M. et al. Characterization of twenty wheat varieties by ISSR markers. Middle East J. Sci. Res. 15(2), 168–175 (2013).

    CAS 

    Google Scholar
     

  • Rekha Malik, R. M. et al. Applicability of ISSR markers for genetic diversity evaluation in Indian bread wheat genotypes of known origin. Environ. Ecol. 26, 126–131 (2008).


    Google Scholar
     

  • Collard, B. C. & Mackill, D. J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27, 86–93 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Aboulila, A. A. & Mansour, M. Efficiency of triple-SCoT primer in characterization of genetic diversity and genotype-specific markers against SSR fingerprint in some Egyptian barley genotypes. Am. J. Mol. Biol. 7(3), 123–137 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cottenie, A. et al. Chemical analysis of plant and soil laboratory of analytical and agrochemistry 100–129 (State University Ghent, 1982).


    Google Scholar
     

  • Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics 975(3), 384–394 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Vl, S. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).

    Article 

    Google Scholar
     

  • Nassar, M. & El-Sahhar, K. Botanical preparations and microscopy (Microtechnique) 219 (Academic Bookshop, Dokki, 1998).


    Google Scholar
     

  • Abd El-Baky, M. A. et al. Anatomical studies on fruits of Samany and Zaghloul palm cultivars as affected by different concentrations of ethephon and cytophex. Egypt. J. of Appl. Sci. 26(7), 219–228 (2011).


    Google Scholar
     

  • Ghazzawy, H. S. et al. Paulownia trees as a sustainable solution for CO2 mitigation: Assessing progress toward 2050 climate goals. Front. Environ. Sci. 12, 1307840 (2024).

    Article 

    Google Scholar
     

  • Sharabasy, S. F. & Ghazzawy, H. S. Good agricultural practices for date palms (Phoenix dactylifera L.). In Handbook of research on principles and practices for orchards management (eds Abobatta, W. F. et al.) 185–202 (IGI Global, 2022).

    Chapter 

    Google Scholar
     

  • Nei, M. & Li, W.-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76(10), 5269–5273 (1979).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K. et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12), 2725–2729 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roldan-Ruiz, I. et al. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6, 125–134 (2000).

    Article 
    CAS 

    Google Scholar
     

  • De Riek, J. et al. AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor. Appl. Genet. 103, 1254–1265 (2001).

    Article 

    Google Scholar
     

  • Prevost, A. & Wilkinson, M. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98, 107–112 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Ennajeh, M. et al. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J. Horticult. Sci. Biotechnol. 85(4), 289–294 (2010).

    Article 

    Google Scholar
     

  • León, L. et al. Selection for fruit removal force and related characteristics in olive breeding progenies. Australian J. Exp. Agric. 45(12), 1643–1647 (2006).

    Article 

    Google Scholar
     

  • Toplu, C. The research on the yield status, phenological, morphological, and pomological properties and nutritional status of olive orchards in different production centers in Hatay. PhD thesis, Cukurova University, Turkey (2000).

  • Ghazzawy, H. S., Sobaih, A. E. E. & Mansour, H. A. The role of micro-irrigation systems in date palm production and quality: Implications for sustainable investment. Agriculture 12(12), 2018 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ghazzawy, H. S. et al. Combined impact of irrigation, potassium fertilizer, and thinning treatments on yield, skin separation, and physicochemical properties of date palm fruits. Plants 12(5), 1003 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Sharabasy, S., Saber, T. & Ghazzawy, H. Response of barhee date palm cultivar to different pollination methods. Plant Arch. 20, 4001–4006 (2020).


    Google Scholar
     

  • Ghazzawy, H. S. et al. Impact of geographical distribution on genetic variation of two date palm cultivars in arid regions. Fresenius Environ. Bull. 30(10), 11516–11523 (2021).


    Google Scholar
     

  • Fernandez-Escobar, R., Moreno, R. & Garcıa-Creus, M. Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle. Sci. Horticult. 82(1–2), 25–45 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Jordã o, P. et al. Effect of fertilization on the leaf macronutrient concentrations of olive tree. In II International Symposium on Olive Growing 356 (1993).

  • Dimassi, K., I. Therios, and A. Passalis. Genotypic effect on leaf mineral levels of 17 olive cultivars grown in Greece. In III International Symposium on Olive Growing 474. 1997.

  • Jordao, P., M. Marcelo, and M. Centeno. Effect of cultivar on leaf-mineral composition of olive tree. In III International Symposium on Olive Growing 474. (1997).

  • Loupassaki, M. et al. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. J. Plant Nutr. 25(11), 2457–2482 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Escobar, R., Antonaya-Baena, F. & Almeida-Lavado, S. Nitrogen uptake efficiency of olive cultivars. Horticulturae 7(6), 136 (2021).

    Article 

    Google Scholar
     

  • Soyergin, S. & A. Katkat. Studies on nutrient contents and seasonal element fluctuations of the olive variety Gemlik in Bursa area. In IV International Symposium on Olive Growing 586. (2000).

  • Toplu, C., Uygur, V. & Yildiz, E. Leaf mineral composition of olive varieties and their relation to yield and adaptation ability. J. Plant Nutr. 32(9), 1560–1573 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Escobar, R., García-Barragán, T. & Benlloch, M. Estado nutritivo de las plantaciones de olivar en la provincia de Granada. ITEA 90, 39–49 (1994).


    Google Scholar
     

  • Soyergin, S., Genc, C. & Fidan, A. Studies on the relationship between late ripening and the nutrition of olive variety “Gemlik” in the Marmara region. In IV International Symposium on Olive Growing 586. (2000).

  • Aydeniz, A. Soil amendment. Ankara Univ. Agricultural Fac. Pub. 928. Practice Guide, p. 263 (1985).

  • Dimassi, K., Therios, I. & Balatsos, A. The blooming period and self-fruitfulness in twelve Greek and three foreign olive cultivars. In III International Symposium on Olive Growing 474. (1997).

  • Zhan, M. et al. Genetic relationships analysis of olive cultivars grown in China. Genet. Mol. Res. 2, 5958–5969 (2015).

    Article 

    Google Scholar
     

  • Mohamed, A. A. H. et al. Morphological and molecular characterization of some olive (Olea europaea) cultivars in El-Arish, Egypt. J. Biosci. Appl. Res. 3(4), 237–251 (2017).

    Article 

    Google Scholar
     

  • Montemurro, C. et al. Genetic relationships and cultivar identification among 112 olive accessions using AFLP and SSR markers. J. Horticult. Sci. Biotechnol. 80(1), 105–110 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Martins-Lopes, P. et al. RAPD and ISSR molecular markers in Olea europaea L.: Genetic variability and molecular cultivar identification. Genet. Resour. Crop Evol. 54, 117–128 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Sorkheh, K. & Khaleghi, E. Molecular characterization of genetic variability and structure of olive (Olea europaea L.) germplasm collection analyzed by agromorphologicaltraits and microsatellite markers. Turkish J. Agric. For. 40(4), 583–596 (2016).

    Article 

    Google Scholar
     

  • Gorji, A. M. et al. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am. J. Potato Res. 88, 226–237 (2011).

    Article 

    Google Scholar
     

  • Shahlaei, A., Torabi, S. & Khosroshahli, M. Efficacy of SCoT and ISSR marekers in assessment of tomato (Lycopersicum esculentum Mill.) genetic diversity. Int. J. Biol. Sci. 5, 14–22. https://doi.org/10.12692/ijb/5.2.14-22 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, F. et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Boil. Rep. 38, 3487–3494 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gomes, S. et al. Assessing genetic diversity in Olea europaea L. using ISSR and SSR markers. Plant Mol. Boil. Rep. 27, 365–373 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hegazi, E. et al. Molecular characterization of local and imported olive cultivars grown in Egypt using ISSR technique. J. Hortic. Sci. Ornamen. Plant 4(2), 148–154 (2012).

    CAS 

    Google Scholar
     

  • Botstein, D. et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Human Genet. 32(3), 314 (1980).

    CAS 

    Google Scholar
     

  • Alikhani, L. et al. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene 552(1), 176–183 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osman, A. K. E. & Abdein, M. A. E. H. Karyological and molecular studies between six species of Plantago in the Northern border region at Saudi Arabia. J. Taibah Univ. Sci. 13(1), 297–308 (2019).

    Article 

    Google Scholar
     

  • Ibrahim, E. A. et al. Morphological, biochemical, and molecular diversity assessment of egyptian bottle gourd cultivars. Genet. Res. 2024, 1–15 (2014).

    Article 

    Google Scholar
     

  • Duncan, D. B. Multiple rang and multiple F test. Biometrics 11, 1–42 (1958).

    Article 

    Google Scholar
     

  • IBM Corp. IBM SPSS Statistics for Windows, Version 26.0. Armonk: IBM Corp (2019).

  • Arafat, S. M. et al. Quality indices, phenolic compounds and sensory evaluation of flavored olive oil. J. Oleo Sci. 72(4), 369–377 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar