Generation and long-term culture of human cerebellar organoids from pluripotent stem cells

  • Del Dosso, A., Urenda, J.-P., Nguyen, T. & Quadrato, G. Upgrading the physiological relevance of human brain organoids. Neuron 107, 1014–1028 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urenda, J.-P., Dosso, A. D., Birtele, M. & Quadrato, G. Present and future modeling of human psychiatric connectopathies with brain organoids. Biol. Psychiatry 93, 606–615 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Eichmüller, O. L. & Knoblich, J. A. Human cerebral organoids—a new tool for clinical neurology research. Nat. Rev. Neurol. 18, 661–680 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atamian, A., Cordón-Barris, L. & Quadrato, G. Taming human brain organoids one cell at a time. Semin. Cell Dev. Biol. 111, 23–31 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, S. W. & Houart, C. Early steps in the development of the forebrain. Dev. Cell 6, 167–181 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmahmann, J. D. The cerebellum and cognition. Neurosci. Lett. 688, 62–75 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. The cerebellum and cognitive neural networks. Front. Hum. Neurosci. 17, 1197459 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great apes. Curr. Biol. 24, 2440–2444 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haldipur, P. et al. Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science 366, 454–460 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aldinger, K. A. et al. Spatial and cell type transcriptional landscape of human cerebellar development. Nat. Neurosci. 24, 1163–1175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sepp, M. et al. Cellular development and evolution of the mammalian cerebellum. Nature 625, 788–796 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atamian, A. et al. Human cerebellar organoids with functional Purkinje cells. Cell Stem Cell 31, 39–51.e6 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, A., Losos, K. & Joyner, A. L. FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126, 4827–4838 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, S., Crossley, P. H., Cobos, I., Rubenstein, J. L. R. & Martin, G. R. FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126, 1189–1200 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garda, A.-L., Echevarrı́a, D. & Martı́nez, S. Neuroepithelial co-expression of Gbx2 and Otx2 precedes Fgf8 expression in the isthmic organizer. Mech. Dev. 101, 111–118 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundberg, M. et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol. Psychiatry 23, 2167–2183 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchholz, D. E. et al. Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics. Proc. Natl Acad. Sci. USA 117, 15085–15095 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quadrato, G. & Arlotta, P. Present and future of modeling human brain development in 3D organoids. Curr. Opin. Cell Biol. 49, 47–52 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10, 537–550 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordström, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nat. Neurosci. 5, 525–532 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Hidalgo-Sánchez, M., Millet, S., Simeone, A. & Alvarado-Mallart, R.-M. Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mech. Dev. 81, 175–178 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Sato, T., Araki, I. & Nakamura, H. Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128, 2461–2469 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hendrickx, M., Van, X. H. & Leyns, L. Anterior–posterior patterning of neural differentiated embryonic stem cells by canonical Wnts, Fgfs, Bmp4 and their respective antagonists. Dev. Growth Differ. 51, 687–698 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, J. et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green, D., Whitener, A. E., Mohanty, S. & Lekven, A. C. Vertebrate nervous system posteriorization: grading the function of Wnt signaling. Dev. Dyn. 244, 507–512 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, H., Katahira, T., Matsunaga, E. & Sato, T. Isthmus organizer for midbrain and hindbrain development. Brain Res. Rev. 49, 120–126 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Chi, C. L., Martinez, S., Wurst, W. & Martin, G. R. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130, 2633–2644 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Y.-R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilz, T. O. et al. The SDF‐1/CXCR4 pathway and the development of the cerebellar system. Eur. J. Neurosci. 22, 1831–1839 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • He, Z. et al. An integrated transcriptomic cell atlas of human neural organoids. Preprint at bioRxiv https://doi.org/10.1101/2023.10.05.561097 (2023).

  • Smith, K. S. et al. Unified rhombic lip origins of group 3 and group 4 medulloblastoma. Nature 609, 1012–1020 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendrikse, L. D. et al. Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature 609, 1021–1028 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, D., Nakaya, Y., Yanagawa, Y., Obata, K. & Murakami, F. Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins. Development 130, 5803–5813 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang, E. S. B. C., Haydar, T. F., Gluncic, V. & Rakic, P. Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23, 5805–5815 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, D. H., Maekawa, K., Yanagawa, Y., Obata, K. & Murakami, F. Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex. Development 133, 2167–2176 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martini, F. J. et al. Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development 136, 41–50 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Britto, J. M., Johnston, L. A. & Tan, S.-S. The stochastic search dynamics of interneuron migration. Biophys. J. 97, 699–709 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, D. H. et al. Random walk behavior of migrating cortical interneurons in the marginal zone: time-lapse analysis in flat-mount cortex. J. Neurosci. 29, 1300–1311 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, D. V. et al. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat. Neurosci. 16, 1576–1587 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, T. et al. Subcortical origins of human and monkey neocortical interneurons. Nat. Neurosci. 16, 1588–1597 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choy, K. R. & Watters, D. J. Neurodegeneration in ataxia-telangiectasia: multiple roles of ATM kinase in cellular homeostasis: ATM and cellular homeostasis. Dev. Dyn. 247, 33–46 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, K. & Kano, M. Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci. Res. 53, 221–228 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Sotelo, C. Cellular and genetic regulation of the development of the cerebellar system. Prog. Neurobiol. 72, 295–339 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sotelo, C. & Chédotal, A. Development of the olivocerebellar system: migration and formation of cerebellar maps. Prog. Brain Res. 148, 1–20 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rahimi-Balaei, M. et al. Embryonic stages in cerebellar afferent development. Cerebellum Ataxias 2, 7 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, M. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9, 304–313 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marton, R. M. et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 22, 484–491 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y.-T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154.e7 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, L. et al. Functionalization of brain region-specific spheroids with isogenic microglia-like cells. Sci. Rep. 9, 11055 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bejoy, J. et al. Genomics analysis of metabolic pathways of human stem cell-derived microglia-like cells and the integrated cortical spheroids. Stem Cells Int. 2019, 2382534 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popova, G. et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28, 2153–2166.e6 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velmeshev, D. et al. Single-cell analysis of prenatal and postnatal human cortical development. Science 382, eadf0834 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385.e27 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polioudakis, D. et al. A single cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron 103, 785–801.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langseth, C. M. et al. Comprehensive in situ mapping of human cortical transcriptomic cell types. Commun. Biol. 4, 998 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, T. P. et al. Maturation of human pluripotent stem cell-derived cerebellar neurons in the absence of co-culture. Front. Bioeng. Biotechnol. 8, 70 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayler, S., Agarwal, D., Curion, F., Bowden, R. & Becker, E. B. E. High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci. Rep. 11, 12959 (2021).

  • Chen, Y. et al. Generation of advanced cerebellar organoids for neurogenesis and neuronal network development. Hum. Mol. Genet. 32, 2832–2841 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, T. P. et al. Transcriptome profiling of human pluripotent stem cell-derived cerebellar organoids reveals faster commitment under dynamic conditions. Biotechnol. Bioeng. 118, 2781–2803 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson, L. M., Wong, M. M. K., Vowles, J., Cowley, S. A. & Becker, E. B. E. A simplified method for generating purkinje cells from human-induced pluripotent stem cells. Cerebellum 17, 419–427 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, T. T. et al. Cerebellar differentiation from human stem cells through retinoid, wnt, and sonic hedgehog pathways. Tissue Eng. A 27, 881–893 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Muguruma, K. et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat. Neurosci. 13, 1171–1180 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giovannucci, A. et al. CaImAn an open source tool for scalable calcium imaging data analysis. eLife 8, e38173 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

  • Kompaníková, P. & Bryja, V. Regulation of choroid plexus development and its functions. Cell. Mol. Life Sci. 79, 304 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruol, D. & Franklin, C. Morphological and physiological differentiation of Purkinje neurons in cultures of rat cerebellum. J. Neurosci. 7, 1271–1293 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raman, I. M. & Bean, B. P. Ionic currents underlying spontaneous action potentials in isolated cerebellar purkinje neurons. J. Neurosci. 19, 1663–1674 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar