Harrison, K., Mackay, A. S., Kambanis, L., Maxwell, J. W. C. & Payne, R. J. Synthesis and applications of mirror-image proteins. Nat. Rev. Chem. 7, 383–404 (2023).
Lander, A. J., Jin, Y. & Luk, L. Y. P. D-peptide and D-protein technology: Recent advances, challenges, and opportunities. ChemBioChem 24, e202200537 (2023).
Yeates, T. O. & Kent, S. B. H. Racemic protein crystallography. Annu. Rev. Biophys. 41, 41–61 (2012).
Kent, S. B. H. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis. Curr. Opin. Chem. Biol. 46, 1–9 (2018).
Milton, R. C. D., Milton, S. C. F. & Kent, S. B. H. Total chemical synthesis of a D-enzyme: The enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science 256, 1445–1448 (1992).
Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl. Acad. Sci. USA 111, 11679–11684 (2014).
Ding, R. C., Shi, W. W. & Zheng, J. S. Chemically synthetic d-sortase enables enzymatic ligation of d-peptides. Org. Lett. 25, 4857–4861 (2023).
Zhang, G. W. & Zhu, T. F. Mirror-image trypsin digestion and sequencing of D-proteins. Nat. Chem. 16, 592–598 (2024).
Wang, Z. M., Xu, W. L., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016).
Xu, Y. & Zhu, T. F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 378, 405–411 (2022).
Ling, J. J. et al. Mirror-image 5S ribonucleoprotein complexes. Angew. Chem. Int. Ed. 59, 3724–3731 (2020).
Poduslo, J. F., Curran, G. L., Kumar, A., Frangione, B. & Soto, C. -sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma. J. Neurobiol. 39, 371–382 (1999).
<a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4695(19990605)39:33.0.CO;2-E” data-track-item_id=”10.1002/(SICI)1097-4695(19990605)39:33.0.CO;2-E” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4695%2819990605%2939%3A3%3C371%3A%3AAID-NEU4%3E3.0.CO%3B2-E” aria-label=”Article reference 12″ data-doi=”10.1002/(SICI)1097-4695(19990605)39:33.0.CO;2-E”>Article
PubMed
Google Scholar
Dintzis, H. M., Symer, D. E., Dintzis, R. Z., Zawadzke, L. E. & Berg, J. M. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins 16, 306–308 (1993).
Scott, J. K. & Smith, G. P. Searcjomg for peptide ligands with an epitope library. Science 249, 386–390 (1990).
Schumacher, T. N. M. et al. Identification of D-peptide ligands through mirror-image phage display. Science 271, 1854–1857 (1996).
Wiesehan, K. et al. Selection of D-Amino-Acid peptides that bind to Alzheimer’s disease amyloid peptide Aβ1-42 by mirror image phage display. ChemBioChem 4, 748–753 (2003).
Liu, M. et al. A left-handed solution to peptide inhibition of the p53-MDM2 interaction. Angew. Chem. Int. Ed. 49, 3649–3652 (2010).
Chang, H. N. et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 54, 11760–11764 (2015).
Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: Discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103–115 (1999).
Díaz-Perlas, C. et al. Protein chemical synthesis combined with mirror-image phage display yields d-peptide EGF ligands that block the EGF-EGFR interaction. ChemBioChem 20, 2079–2084 (2019).
Zhou, X. M. et al. A novel d-peptide identified by mirror-image phage display blocks TIGIT/PVR for cancer immunotherapy. Angew. Chem. Int. Ed. 59, 15114–15118 (2020).
Li, Z. X. et al. Novel strategy utilizing extracellular cysteine-rich domain of membrane receptor for constructing D-peptide mediated targeted drug delivery systems: A case study on Fn14. Bioconjug. Chem. 28, 2167–2179 (2017).
Malhis, M. et al. Potent Tau aggregation inhibitor D-peptides selected against Tau-repeat 2 using mirror image phage display. ChemBioChem 22, 3049–3059 (2021).
Callahan, A. J. et al. Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nat. Commun. 15, 1813 (2024).
Welch, B. D., VanDemark, A. P., Heroux, A., Hill, C. P. & Kay, M. S. Potent D-peptide inhibitors of HIV-1 entry. Proc. Natl. Acad. Sci. USA 104, 16828–16833 (2007).
Welch, B. D. et al. Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J. Virol. 84, 11235–11244 (2010).
Vazquez-Lombardi, R. et al. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov. Today 20, 1271–1283 (2015).
Gebauer, M. & Skerra, A. Engineered protein scaffolds as next-generation therapeutics. Annu. Rev. Pharmacol. Toxicol. 60, 391–415 (2020).
Mandal, K. et al. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc. Natl. Acad. Sci. USA 109, 14779–14784 (2012).
Uppalapati, M. et al. A potent D-protein antagonist of VEGF-A is nonimmunogenic, metabolically stable, and longer-circulating in vivo. ACS Chem. Biol. 11, 1058–1065 (2016).
Marinec, P. S. et al. A non-immunogenic bivalent D-protein potently inhibits retinal vascularization and tumor growth. ACS Chem. Biol. 16, 548–556 (2021).
Kamalinia, G., Grindel, B. J., Takahashi, T. T., Millward, S. W. & Roberts, R. W. Directing evolution of novel ligands by mRNA display. Chem. Soc. Rev. 50, 9055–9103 (2021).
Roberts, R. W. & Szostak, J. W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).
Nemoto, N., MiyamotoSato, E., Husimi, Y. & Yanagawa, H. In vitro virus: Bonding of mRNA bearing puromycin at the 3’-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408 (1997).
Ishizawa, T., Kawakami, T., Reid, P. C. & Murakami, H. TRAP Display: A high-speed selection method for the generation of functional polypeptides. J. Am. Chem. Soc. 135, 5433–5440 (2013).
Koide, A., Bailey, C. W., Huang, X. L. & Koide, S. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151 (1998).
Kondo, T. et al. Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci. Adv. 6, eabd3916 (2020).
Yamano, K. et al. Optineurin provides a mitophagy contact site for TBK1 activation. EMBO J. 43, 754–779 (2024).
Dawson, P. E. & Kent, S. B. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960 (2000).
Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).
Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).
Singh, S. & Anshita, D. Ravichandiran. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 101, 107598 (2021).
Li, H., Wu, M. & Zhao, X. Role of chemokine systems in cancer and inflammatory diseases. MedComm 3, e147 (2022).
Schmidt, N. et al. Development of mirror-image monobodies targeting the oncogenic BCR::ABL1 kinase. Nat. Commun. https://doi.org/10.1038/s41467-024-54901-y (2024).
Furutani, Y. et al. Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem. Biophys. Res. Commun. 159, 249–255 (1989).
Robinson, E. A. et al. Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc. Natl. Acad. Sci. USA 86, 1850–1854 (1989).
Lai, Z. W., Petrera, A. & Schilling, O. Protein amino-terminal modifications and proteomic approaches for N-terminal profiling. Curr. Opin. Chem. Biol. 24, 71–79 (2015).
Grygiel, T. L. R. et al. Synthesis by native chemical ligation and crystal structure of human CCL2. Biopolymers 94, 350–359 (2010).
Dawson, P. E., Muir, T. W., Clarklewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).
Blanco-Canosa, J. B., Nardone, B., Albericio, F. & Dawson, P. E. Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. J. Am. Chem. Soc. 137, 7197–7209 (2015).
Johnson, E. C. B. & Kent, S. B. H. Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 128, 6640–6646 (2006).
Wojcik, J. et al. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat. Struct. Mol. Biol. 17, 519–527 (2010).
Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).
Kondo, T. et al. Monobodies with potent neutralizing activity against SARS-CoV-2 Delta and other variants of concern. Life Sci. Alliance 5, e202101322 (2022).
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004).
Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).
Kamo, N., Hayashi, G. & Okamoto, A. Triple function of 4-mercaptophenylacetic acid promotes one-pot multiple peptide ligation. Angew. Chem. Int. Ed. 57, 16533–16537 (2018).
Kamo, N. et al. Organoruthenium-catalyzed chemical protein synthesis to elucidate the functions of epigenetic modifications on heterochromatin factors. Chem. Sci. 12, 5926–5937 (2021).
Kamo, N., Hayashi, G. & Okamoto, A. Efficient peptide ligation between allyl-protected Asp and Cys followed by palladium-mediated deprotection. Chem. Commun. 54, 4337–4340 (2018).
Iwamoto, N. et al. Design and synthesis of monobody variants with low immunogenicity. ACS Med. Chem. Lett. 14, 1596–1601 (2023).
Fang, G. M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645–7649 (2011).
Zheng, J. S., Tang, S., Qi, Y. K., Wang, Z. P. & Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 8, 2483–2495 (2013).
Flood, D. T. et al. Leveraging the Knorr pyrazole synthesis for the facile generation of thioester surrogates for use in native chemical ligation. Angew. Chem. Int. Ed. 57, 11634–11639 (2018).
Sato, K. et al. Direct synthesis of N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. Chem. Commun. 54, 9127–9130 (2018).
Umemoto, S., Kondo, T., Fujino, T., Hayashi, G. & Murakami, H. Large-scale analysis of mRNA sequences localized near the start and amber codons and their impact on the diversity of mRNA display libraries. Nucleic Acids Res. 51, 7465–7479 (2023).
Huang, L. Y. et al. Highly selective targeting of hepatic stellate cells for liver fibrosis treatment using a D-enantiomeric peptide ligand of Fn14 identified by mirror-image mRNA display. Mol. Pharm. 14, 1742–1753 (2017).
Ohashi, H., Shimizu, Y., Ying, B. W. & Ueda, T. Efficient protein selection based on ribosome display system with purified components. Biochem. Biophys. Res. Commun. 352, 270–276 (2007).
Reid, P. C., Goto, Y., Katoh, T. & Suga, H. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers. Methods Mol. Biol. 805, 335–348 (2012).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41467-024-54902-x