Generating a mirror-image monobody targeting MCP-1 via TRAP display and chemical protein synthesis

  • Harrison, K., Mackay, A. S., Kambanis, L., Maxwell, J. W. C. & Payne, R. J. Synthesis and applications of mirror-image proteins. Nat. Rev. Chem. 7, 383–404 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lander, A. J., Jin, Y. & Luk, L. Y. P. D-peptide and D-protein technology: Recent advances, challenges, and opportunities. ChemBioChem 24, e202200537 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yeates, T. O. & Kent, S. B. H. Racemic protein crystallography. Annu. Rev. Biophys. 41, 41–61 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kent, S. B. H. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis. Curr. Opin. Chem. Biol. 46, 1–9 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Milton, R. C. D., Milton, S. C. F. & Kent, S. B. H. Total chemical synthesis of a D-enzyme: The enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science 256, 1445–1448 (1992).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl. Acad. Sci. USA 111, 11679–11684 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, R. C., Shi, W. W. & Zheng, J. S. Chemically synthetic d-sortase enables enzymatic ligation of d-peptides. Org. Lett. 25, 4857–4861 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, G. W. & Zhu, T. F. Mirror-image trypsin digestion and sequencing of D-proteins. Nat. Chem. 16, 592–598 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. M., Xu, W. L., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, Y. & Zhu, T. F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 378, 405–411 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ling, J. J. et al. Mirror-image 5S ribonucleoprotein complexes. Angew. Chem. Int. Ed. 59, 3724–3731 (2020).

    Article 

    Google Scholar
     

  • Poduslo, J. F., Curran, G. L., Kumar, A., Frangione, B. & Soto, C. -sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma. J. Neurobiol. 39, 371–382 (1999).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4695(19990605)39:33.0.CO;2-E” data-track-item_id=”10.1002/(SICI)1097-4695(19990605)39:33.0.CO;2-E” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4695%2819990605%2939%3A3%3C371%3A%3AAID-NEU4%3E3.0.CO%3B2-E” aria-label=”Article reference 12″ data-doi=”10.1002/(SICI)1097-4695(19990605)39:33.0.CO;2-E”>Article 
    PubMed 

    Google Scholar
     

  • Dintzis, H. M., Symer, D. E., Dintzis, R. Z., Zawadzke, L. E. & Berg, J. M. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins 16, 306–308 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Scott, J. K. & Smith, G. P. Searcjomg for peptide ligands with an epitope library. Science 249, 386–390 (1990).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schumacher, T. N. M. et al. Identification of D-peptide ligands through mirror-image phage display. Science 271, 1854–1857 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wiesehan, K. et al. Selection of D-Amino-Acid peptides that bind to Alzheimer’s disease amyloid peptide Aβ1-42 by mirror image phage display. ChemBioChem 4, 748–753 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. A left-handed solution to peptide inhibition of the p53-MDM2 interaction. Angew. Chem. Int. Ed. 49, 3649–3652 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chang, H. N. et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 54, 11760–11764 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: Discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103–115 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Díaz-Perlas, C. et al. Protein chemical synthesis combined with mirror-image phage display yields d-peptide EGF ligands that block the EGF-EGFR interaction. ChemBioChem 20, 2079–2084 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X. M. et al. A novel d-peptide identified by mirror-image phage display blocks TIGIT/PVR for cancer immunotherapy. Angew. Chem. Int. Ed. 59, 15114–15118 (2020).

    Article 

    Google Scholar
     

  • Li, Z. X. et al. Novel strategy utilizing extracellular cysteine-rich domain of membrane receptor for constructing D-peptide mediated targeted drug delivery systems: A case study on Fn14. Bioconjug. Chem. 28, 2167–2179 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Malhis, M. et al. Potent Tau aggregation inhibitor D-peptides selected against Tau-repeat 2 using mirror image phage display. ChemBioChem 22, 3049–3059 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, A. J. et al. Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nat. Commun. 15, 1813 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, B. D., VanDemark, A. P., Heroux, A., Hill, C. P. & Kay, M. S. Potent D-peptide inhibitors of HIV-1 entry. Proc. Natl. Acad. Sci. USA 104, 16828–16833 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, B. D. et al. Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J. Virol. 84, 11235–11244 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez-Lombardi, R. et al. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov. Today 20, 1271–1283 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gebauer, M. & Skerra, A. Engineered protein scaffolds as next-generation therapeutics. Annu. Rev. Pharmacol. Toxicol. 60, 391–415 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mandal, K. et al. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc. Natl. Acad. Sci. USA 109, 14779–14784 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uppalapati, M. et al. A potent D-protein antagonist of VEGF-A is nonimmunogenic, metabolically stable, and longer-circulating in vivo. ACS Chem. Biol. 11, 1058–1065 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Marinec, P. S. et al. A non-immunogenic bivalent D-protein potently inhibits retinal vascularization and tumor growth. ACS Chem. Biol. 16, 548–556 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kamalinia, G., Grindel, B. J., Takahashi, T. T., Millward, S. W. & Roberts, R. W. Directing evolution of novel ligands by mRNA display. Chem. Soc. Rev. 50, 9055–9103 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, R. W. & Szostak, J. W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemoto, N., MiyamotoSato, E., Husimi, Y. & Yanagawa, H. In vitro virus: Bonding of mRNA bearing puromycin at the 3’-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408 (1997).

  • Ishizawa, T., Kawakami, T., Reid, P. C. & Murakami, H. TRAP Display: A high-speed selection method for the generation of functional polypeptides. J. Am. Chem. Soc. 135, 5433–5440 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Koide, A., Bailey, C. W., Huang, X. L. & Koide, S. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Kondo, T. et al. Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci. Adv. 6, eabd3916 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamano, K. et al. Optineurin provides a mitophagy contact site for TBK1 activation. EMBO J. 43, 754–779 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawson, P. E. & Kent, S. B. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).

    Article 

    Google Scholar
     

  • Singh, S. & Anshita, D. Ravichandiran. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 101, 107598 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H., Wu, M. & Zhao, X. Role of chemokine systems in cancer and inflammatory diseases. MedComm 3, e147 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, N. et al. Development of mirror-image monobodies targeting the oncogenic BCR::ABL1 kinase. Nat. Commun. https://doi.org/10.1038/s41467-024-54901-y (2024).

  • Furutani, Y. et al. Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem. Biophys. Res. Commun. 159, 249–255 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Robinson, E. A. et al. Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc. Natl. Acad. Sci. USA 86, 1850–1854 (1989).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, Z. W., Petrera, A. & Schilling, O. Protein amino-terminal modifications and proteomic approaches for N-terminal profiling. Curr. Opin. Chem. Biol. 24, 71–79 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Grygiel, T. L. R. et al. Synthesis by native chemical ligation and crystal structure of human CCL2. Biopolymers 94, 350–359 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dawson, P. E., Muir, T. W., Clarklewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Blanco-Canosa, J. B., Nardone, B., Albericio, F. & Dawson, P. E. Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. J. Am. Chem. Soc. 137, 7197–7209 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, E. C. B. & Kent, S. B. H. Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 128, 6640–6646 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wojcik, J. et al. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat. Struct. Mol. Biol. 17, 519–527 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Kondo, T. et al. Monobodies with potent neutralizing activity against SARS-CoV-2 Delta and other variants of concern. Life Sci. Alliance 5, e202101322 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).

    Article 

    Google Scholar
     

  • Kamo, N., Hayashi, G. & Okamoto, A. Triple function of 4-mercaptophenylacetic acid promotes one-pot multiple peptide ligation. Angew. Chem. Int. Ed. 57, 16533–16537 (2018).

    Article 

    Google Scholar
     

  • Kamo, N. et al. Organoruthenium-catalyzed chemical protein synthesis to elucidate the functions of epigenetic modifications on heterochromatin factors. Chem. Sci. 12, 5926–5937 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamo, N., Hayashi, G. & Okamoto, A. Efficient peptide ligation between allyl-protected Asp and Cys followed by palladium-mediated deprotection. Chem. Commun. 54, 4337–4340 (2018).

    Article 

    Google Scholar
     

  • Iwamoto, N. et al. Design and synthesis of monobody variants with low immunogenicity. ACS Med. Chem. Lett. 14, 1596–1601 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, G. M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645–7649 (2011).

    Article 

    Google Scholar
     

  • Zheng, J. S., Tang, S., Qi, Y. K., Wang, Z. P. & Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 8, 2483–2495 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Flood, D. T. et al. Leveraging the Knorr pyrazole synthesis for the facile generation of thioester surrogates for use in native chemical ligation. Angew. Chem. Int. Ed. 57, 11634–11639 (2018).

    Article 

    Google Scholar
     

  • Sato, K. et al. Direct synthesis of N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. Chem. Commun. 54, 9127–9130 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Umemoto, S., Kondo, T., Fujino, T., Hayashi, G. & Murakami, H. Large-scale analysis of mRNA sequences localized near the start and amber codons and their impact on the diversity of mRNA display libraries. Nucleic Acids Res. 51, 7465–7479 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. Y. et al. Highly selective targeting of hepatic stellate cells for liver fibrosis treatment using a D-enantiomeric peptide ligand of Fn14 identified by mirror-image mRNA display. Mol. Pharm. 14, 1742–1753 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ohashi, H., Shimizu, Y., Ying, B. W. & Ueda, T. Efficient protein selection based on ribosome display system with purified components. Biochem. Biophys. Res. Commun. 352, 270–276 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Reid, P. C., Goto, Y., Katoh, T. & Suga, H. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers. Methods Mol. Biol. 805, 335–348 (2012).

    Article 
    PubMed 

    Google Scholar