Search
Close this search box.

Gene targeting in adult organs using in vivo cleavable donor plasmids for CRISPR-Cas9 and CRISPR-Cas12a – Scientific Reports

  • Raguram, A. et al. Therapeutic in vivo delivery of gene editing agents. Cell 185(15), 2806–2827 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taha, E. A. et al. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J. Control. Release 342, 345–361 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. CRISPR/Cas9 therapeutics: Progress and prospects. Sig. Transduct Target Ther. 8, 36 (2023).

    Article 

    Google Scholar
     

  • Bhavesh, D. K. et al. Dlivery of gene editing thrapeutics. Nanomedicine 54, 102711 (2023).

    Article 

    Google Scholar
     

  • Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S. & Yang, S. H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4, e264 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisheit, I. et al. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Rep. 31, 107689 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Höijer, I. et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat. Commun. 13, 627 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krysler, A. R. et al. Guide RNAs containing universal bases enable Cas9/Cas12a recognition of polymorphic sequences. Nat. Commun. 13, 1617 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinstiver, B. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ledford, H. Alternative CRISPR system could improve genome editing. Nature 526, 17 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, G., Budker, V. & Wolff, J. A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 10(10), 1735–1737 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maruyama, H. et al. High-level expression of naked DNA delivered to rat liver via tail vein injection. J. Gene Med. 4, 333–341 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tada, M. et al. High volume hydrodynamic injection of plasmid DNA via the hepatic artery results in a high level of gene expression in rat hepatocellular carcinoma induced by diethylnitrosamine. J. Gene Med. 8, 1018–1026 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammed, S. et al. Hydrodynamic delivery. Adv. Genet. 54, 65–82 (2005).

    Article 

    Google Scholar
     

  • Yan, S. et al. High levels of gene expression in the hepatocytes of adult mice, neonatal mice and tree shrews via retro-orbital sinus hydrodynamic injections of naked plasmid DNA. J. Control. Release 161(3), 763–771 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCaffrey, A. P. et al. Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. Mol. Ther. 5, 676–684 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. et al. Replication of the human hepatitis delta virus genome is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J. Virol. 75, 3469–3473 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giladi, H. et al. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 8, 769–776 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, N. et al. Vector-based in vivo RNA interference: Dose- and time-dependent suppression of transgene expression. J. Pharmacol. Exp. Ther. 308, 688–693 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Layzer, J. M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G. et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 11, 675–682 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, N. et al. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: Implication of a nonspecific process in efficient intracellular gene delivery. J. Gene Med. 6, 584–592 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, N. et al. Hepatic uptake and gene expression mechanisms following intravenous administration of plasmid DNA by conventional and hydrodynamics-based procedures. J. Pharmacol. Exp. Ther. 297, 853–860 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, P. L. et al. Hydrodynamic injection of viral DNA: A mouse model of acute hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 99, 13825–13830 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Hydrodynamic cell delivery for simultaneous establishment of tumor growth in mouse lung, liver and kidney. Cancer Biol. Ther. 12, 737–741 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishibashi, R. et al. Development of an in vivo cleavable donor plasmid for targeted transgene integration by CRISPR-Cas9 and CRISPR-Cas12a. Sci. Rep. 12, 17775 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwan, R. et al. Hepatocyte-specific deletion of mouse Lamin A/C leads to male-selective steatohepatitis. Cell Mol. Gastroenterol. Hepatol. 4, 365–383 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bochkov Y.A., et al., Bochkov YA, Palmenberg AC. Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. Biotechniques 41, 283–4, 286, 288 passim. (2006).

  • Yang, Y. P. et al. A Chimeric Egfr protein reporter mouse reveals Egfr localization and trafficking in vivo. Cell Rep. 19, 1257–1267 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedmann, T. The future for gene therapy—a reevaluation. Ann. N. Y. Acad. Sci. 265, 141–152 (1976).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blucha, J. T. et al. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target Ther. 6, 53 (2021).

    Article 

    Google Scholar
     

  • Monteys, A. M. et al. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol. Ther. 25, 12–23 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishiguchi, K. M. et al. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice. Nat. Commun. 11, 482 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, C. J. et al. Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. J. Control Release 298, 128–141 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erles, K. et al. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J. Med. Virol. 59, 406–411 (1999).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1096-9071(199911)59:33.0.CO;2-N” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-9071%28199911%2959%3A3%3C406%3A%3AAID-JMV22%3E3.0.CO%3B2-N” aria-label=”Article reference 43″ data-doi=”10.1002/(SICI)1096-9071(199911)59:33.0.CO;2-N”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manno, C. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monteilhet, V. et al. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol. Ther. 19, 2084–2091 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29, 285–298 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, A. et al. A self-deleting AAV-CRISPR system for in vivo genome editing. Mol. Ther. Methods Clin. Dev. 12, 111–122 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanlon, K. S. et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun. 10, 4439 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, X. et al. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27, 801–814 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, A. R. et al. CRISPR-Cas12a with an oAd induces precise and cancer-specific genomic reprogramming of EGFR and efficient tumor regression. Mol. Ther. 28, 2286–2296 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, W. et al. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Sci. Adv. 6, eaba2983 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koo, T. et al. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat. Commun. 9, 1855 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magdolna, G. S. et al. Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J. Gene Med. 7, 852–873 (2006).


    Google Scholar
     

  • Harris, T. J. et al. Tissue-specific gene delivery via nanoparticle coating. Biomaterials 31, 998–1006 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mastop, M. et al. A FRET-based biosensor for measuring Gα13 activation in single cells. PLoS ONE 13, e0193705 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar