Search
Close this search box.

Functional characterisation of a new halotolerant seawater active glycoside hydrolase family 6 cellobiohydrolase from a salt marsh – Scientific Reports

  • Alsaleh, M., Abdul-Rahim, A. S. & Abdulwakil, M. M. EU28 region’s water security and the effect of bioenergy industry sustainability. Environ. Sci. Pollut. Res. 28, 9346–9361. https://doi.org/10.1007/s11356-020-11425-4 (2021).

    Article 

    Google Scholar
     

  • Scapini, T. et al. Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2021.126325 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, M., Mintz, M., Wang, M. & Arora, S. Water consumption in the production of ethanol and petroleum gasoline. Environ. Manage. 44, 981–997. https://doi.org/10.1007/s00267-009-9370-0 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Elderfield, H., Holland, H. D. & Turekian, K. K. The Oceans and Marine Geochemistry 1st edn. (Elsevier, 2006).


    Google Scholar
     

  • Turner, D. R., Whitfield, M. & Dickson, A. G. The equilibrium speciation of dissolved components in fresh-water and seawater at 25-degrees-C and 1 atm pressure. Geochim Cosmochim Acta 45, 855–881. https://doi.org/10.1016/0016-7037(81)90115-0 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Byrne, R. H., Kump, L. R. & Cantrell, K. J. The influence of temperature and pH on trace-metal speciation in seawater. Mar. Chem. 25, 163–181. https://doi.org/10.1016/0304-4203(88)90062-x (1988).

    Article 
    CAS 

    Google Scholar
     

  • Enache, M. & Kamekura, M. Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom. J. Biochem. 47, 47–59 (2010).

    CAS 

    Google Scholar
     

  • Delgado-Garcia, M., Valdivia-Urdiales, B., Aguilar-Gonzalez, C. N., Contreras-Esquivel, J. C. & Rodriguez-Herrera, R. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 92, 2575–2580. https://doi.org/10.1002/jsfa.5860 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. S., Huang, Z. Q., Zhang, X. N., Shao, Z. Z. & Liu, Z. D. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 18, 441–450. https://doi.org/10.1007/s00792-014-0629-x (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madern, D., Ebel, C. & Zaccai, G. Halophilic adaptation of enzymes. Extremophiles 4, 91–98. https://doi.org/10.1007/s007920050142 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nayek, A., Sen Gupta, P. S., Banerjee, S., Mondal, B. & Bandyopadhyay, A. K. Salt-bridge energetics in halophilic proteins. Plos One 9, 11. https://doi.org/10.1371/journal.pone.0093862 (2014).

    Article 

    Google Scholar
     

  • Warden, A. C. et al. Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst. Nat. Commun. 6, 10. https://doi.org/10.1038/ncomms10278 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. J. et al. Seawater as alternative to freshwater in pretreatment of date palm residues for bioethanol production in coastal and/or arid areas. ChemSusChem 8, 3823–3831. https://doi.org/10.1002/cssc.201501116 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pramanik, S., Dhoke, G. V., Jaeger, K. E., Schwaneberg, U. & Davari, M. D. How to engineer ionic liquids resistant enzymes: Insights from combined molecular dynamics and directed evolution study. ACS Sustain. Chem. Eng. 7, 11293–11302. https://doi.org/10.1021/acssuschemeng.9b00752 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Talamantes, D., Biabini, N., Dang, H., Abdoun, K. & Berlemont, R. Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol. Biofuels 9, 11. https://doi.org/10.1186/s13068-016-0538-6 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sabbadin, F. et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat. Commun. 9, 12. https://doi.org/10.1038/s41467-018-03142-x (2018).

    Article 
    CAS 

    Google Scholar
     

  • Filiatrault-Chastel, C. et al. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol. Biofuels https://doi.org/10.1186/s13068-019-1394-y (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Maria, P. D. On the use of seawater as reaction media for large-scale applications in biorefineries. Chemcatchem 5, 1643–1648. https://doi.org/10.1002/cctc.201200877 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, L. P., Du, P. & Wang, H. Seawater modification of lignocellulosic fibers: comparison of rice husk and rice straw fibers. Mater. Res. Express https://doi.org/10.1088/2053-1591/abe8c4 (2021).

    Article 

    Google Scholar
     

  • Fang, C. J. et al. Factors affecting seawater-based pretreatment of lignocellulosic date palm residues. Bioresour. Technol. 245, 540–548. https://doi.org/10.1016/j.biortech.2017.08.184 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. K., Zhang, W. W., Lei, F. H., Yang, S. J. & Jiang, J. X. Coproduction of xylooligosaccharides and fermentable sugars from sugarcane bagasse by seawater hydrothermal pretreatment. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2020.123385 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Promising seawater hydrothermal combining electro-assisted pretreatment for corn stover valorization within a biorefinery concept. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2022.127066 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, Z. C., Yi, J., Li, J. M., He, T. & Hu, C. W. Promoting effect of sodium chloride on the solubilization and depolymerization of cellulose from raw biomass materials in water. ChemSusChem 8, 1901–1907. https://doi.org/10.1002/cssc.201500158 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. C. et al. Sodium chloride-assisted depolymerization of xylo-oligomers to xylose. ACS Sustain. Chem. Eng. 6, 4098. https://doi.org/10.1021/acssuschemeng.7b04463 (2018).

    Article 
    CAS 

    Google Scholar
     

  • vom Stein, T. et al. Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chem. 12, 1844–1849. https://doi.org/10.1039/c0gc00262c (2010).

    Article 
    CAS 

    Google Scholar
     

  • Das, L. et al. Seawater-based one-pot ionic liquid pretreatment of sorghum for jet fuel production. Bioresour. Technol. Rep. 13, 100622. https://doi.org/10.1016/j.biteb.2020.100622 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, W. J., Zhao, X. Q., Ge, X. M. & Bai, F. W. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J. Appl. Microbiol. 105, 2076–2083. https://doi.org/10.1111/j.1365-2672.2008.03903.x (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaky, A. S., Greetham, D., Tucker, G. A. & Du, C. Y. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain. Sci. Rep. https://doi.org/10.1038/s41598-018-30660-x (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dev, B., Bakshi, A. & Paramasivan, B. Prospects of utilizing seawater as a reaction medium for pretreatment and saccharification of rice straw. Chemosphere https://doi.org/10.1016/j.chemosphere.2022.133528 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Indira, D. & Jayabalan, R. Saccharification of lignocellulosic biomass using seawater and halotolerant cellulase with potential application in second-generation bioethanol production. Biomass Convers. Biorefin. 10, 639–650. https://doi.org/10.1007/s13399-019-00468-4 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bonatto, C. et al. Utilization of seawater and wastewater from shrimp production in the fermentation of papaya residues to ethanol. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2020.124501 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Baghel, R. S. Developments in seaweed biorefinery research: A comprehensive review. Chem. Eng. J. https://doi.org/10.1016/j.cej.2022.140177 (2023).

    Article 

    Google Scholar
     

  • Llano, T., Arce, C., Gallart, L. E., Perales, A. & Coz, A. Techno-economic analysis of macroalgae biorefineries: A comparison between ethanol and butanol facilities. Ferment. Basel https://doi.org/10.3390/fermentation9040340 (2023).

    Article 

    Google Scholar
     

  • Moniz, P., Martins, D., Oliveira, A. C., Reis, A. & da Silva, T. L. The biorefinery of the marine microalga Crypthecodinium cohnii as a strategy to valorize microalgal oil fractions. Ferment. Basel https://doi.org/10.3390/fermentation8100502 (2022).

    Article 

    Google Scholar
     

  • Dadwal, A., Sharma, S. & Satyanarayana, T. Recombinant cellobiohydrolase of Myceliophthora thermophila: Characterization and applicability in cellulose saccharification. Amb Express https://doi.org/10.1186/s13568-021-01311-8 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baramee, S. et al. A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation. Appl. Microbiol. Biotechnol. 101, 1175–1188. https://doi.org/10.1007/s00253-016-7895-8 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerda-Mejia, L., Valenzuela, S. V., Frias, C., Diaz, P. & Pastor, F. I. J. A bacterial GH6 cellobiohydrolase with a novel modular structure. Appl. Microbiol. Biotechnol. 101, 2943–2952. https://doi.org/10.1007/s00253-017-8129-4 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, L. N., Lu, T., Lin, D. Q. & Yao, S. J. Discovery of extremophilic cellobiohydrolases from marine Aspergillus niger with computational analysis. Process Biochem. 115, 118–127. https://doi.org/10.1016/j.procbio.2022.02.016 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Takeda, M. et al. Metagenomic mining and structure-function studies of a hyper-thermostable cellobiohydrolase from hot spring sediment. Commun. Biol. https://doi.org/10.1038/s42003-022-03195-1 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonugli-Santos, R. C. et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00269 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinha, R. & Khare, S. K. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front. Microbiol. 5, 6. https://doi.org/10.3389/fmicb.2014.00165 (2014).

    Article 

    Google Scholar
     

  • Pramanik, S. et al. An engineered cellobiohydrolase I for sustainable degradation of lignocellulosic biomass. Biotechnol. Bioeng. 118, 4014–4027. https://doi.org/10.1002/bit.27877 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Contreras, F. et al. Engineering robust cellulases for tailored lignocellulosic degradation cocktails. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21051589 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leadbeater, D. R. et al. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Microbiome https://doi.org/10.1186/s40168-020-00964-0 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786. https://doi.org/10.1038/nmeth.1701 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lever, M. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH)—effect of bismuth on reaction. Anal. Biochem. 81, 21–27. https://doi.org/10.1016/0003-2697(77)90594-2 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez, L. D., Bristow, J. K., Statham, E. R. & McQueen-Mason, S. J. Analysis of saccharification in Brachypodium distachyon stems under mild conditions of hydrolysis. Biotechnol. Biofuels https://doi.org/10.1186/1754-6834-1-15 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herlet, J. et al. A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes. Biotechnol. Biofuels 10, 12. https://doi.org/10.1186/s13068-017-0923-9 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kurasin, M. & Valjamae, P. Processivity of cellobiohydrolases is limited by the substrate. J. Biol. Chem. 286, 169–177. https://doi.org/10.1074/jbc.M110.161059 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kern, M. et al. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc. Natl. Acad. Sci. U. S. A. 110, 10189–10194. https://doi.org/10.1073/pnas.1301502110 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583. https://doi.org/10.1038/s41586-021-03819-2 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82. https://doi.org/10.1002/pro.3943 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, E., Oliphant, T. & Peterson, P. SciPy: Open source scientific tools for Python. (2001).

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of machine Learning research 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Fox, J. M., Levine, S. E., Clark, D. S. & Blanch, H. W. Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry 51, 442–452. https://doi.org/10.1021/bi2011543 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchiyama, T. et al. Convergent evolution of processivity in bacterial and fungal cellulases. Proc. Natl. Acad. Sci. U. S. Am. 117, 19896–19903. https://doi.org/10.1073/pnas.2011366117 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hrmova, M. & Schwerdt, J. G. Molecular mechanisms of processive glycoside hydrolases underline catalytic pragmatism. Biochem. Soc. Trans. 51, 1387–1403. https://doi.org/10.1042/bst20230136 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jalak, J., Kurasin, M., Teugjas, H. & Valjamae, P. Endo-exo synergism in cellulose hydrolysis revisited. J. Biol. Chem. 287, 28802–28815. https://doi.org/10.1074/jbc.M112.381624 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vuong, T. V. & Wilson, D. B. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl. Environ. Microbiol. 75, 6655–6661. https://doi.org/10.1128/aem.01260-09 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ReverbelLeroy, C., Pages, S., Belaich, A., Belaich, J. P. & Tardif, C. The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: Purification and characterization of the recombinant form. J. Bacteriol. 179, 46–52. https://doi.org/10.1128/jb.179.1.46-52.1997 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parsiegla, G. et al. The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. Embo J. 17, 5551–5562. https://doi.org/10.1093/emboj/17.19.5551 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S., Irwin, D. C. & Wilson, D. B. Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B. Eur. J. Biochem. 267, 3101–3115. https://doi.org/10.1046/j.1432-1327.2000.01315.x (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson, B. J., Zhang, H. T., Longmire, A. G., Moon, Y. H. & Hutcheson, S. W. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J. Bacteriol. 191, 5697–5705. https://doi.org/10.1128/jb.00481-09 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Ossowski, I. et al. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A.: A comparison with Phanerochaete chrysosporium Cel7D. J. Mol. Biol. 333, 817–829. https://doi.org/10.1016/s0022-2836(03)00881-7 (2003).

    Article 

    Google Scholar
     

  • Reyes-Ortiz, V. et al. Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnol. Biofuels 6, 13. https://doi.org/10.1186/1754-6834-6-93 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nakamura, A. et al. Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases. J. Biol. Chem. 295, 14606–14617. https://doi.org/10.1074/jbc.RA120.014792 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horn, S. J. et al. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc. Natl. Acad. Sci. U. S. A. 103, 18089–18094. https://doi.org/10.1073/pnas.0608909103 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantarel, B. L. et al. The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238. https://doi.org/10.1093/nar/gkn663 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Billard, H., Faraj, A., Lopes Ferreira, N., Menir, S. & Heiss-Blanquet, S. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol. Biofuels 5, 13. https://doi.org/10.1186/1754-6834-5-9 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chem. 13, 2083–2090. https://doi.org/10.1039/c1gc15193b (2011).

    Article 
    CAS 

    Google Scholar
     

  • Asha, B. M. & Sakthivel, N. Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkalophilic and solvent-tolerant properties. Ann. Microbiol. 64, 1839–1848. https://doi.org/10.1007/s13213-014-0835-x (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cai, L. N., Xu, S. N., Lu, T., Lin, D. Q. & Yao, S. J. Salt-tolerant mechanism of marine Aspergillus niger cellulase cocktail and improvement of its activity. Chin. J. Chem. Eng. 28, 1120–1128. https://doi.org/10.1016/j.cjche.2019.11.012 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Baumann, H., Wallace, R. B., Tagliaferri, T. & Gobler, C. J. Large natural pH, CO2 and O-2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries Coasts 38, 220–231. https://doi.org/10.1007/s12237-014-9800-y (2015).

    Article 
    CAS 

    Google Scholar
     

  • Prabmark, K. et al. Enhancement of catalytic activity and alkaline stability of cellobiohydrolase by structure-based protein engineering. 3 Biotech https://doi.org/10.1007/s13205-022-03339-4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Y. R. et al. Heterologous expression and characterization of a novel halotolerant, thermostable, and alkali-stable GH6 endoglucanase from Thermobifida halotolerans. Biotechnol. Lett. 37, 857–862. https://doi.org/10.1007/s10529-014-1742-8 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul, S., Bag, S. K., Das, S., Harvill, E. T. & Dutta, C. Molecular signature of hypersaline adaptation: Insights from genome and proteome composition of halophilic prokaryotes. Genome Biol. 9, 19. https://doi.org/10.1186/gb-2008-9-4-r70 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Jaenicke, R. Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202, 715–728. https://doi.org/10.1111/j.1432-1033.1991.tb16426.x (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amoozegar, M. A., Siroosi, M., Atashgahi, S., Smidt, H. & Ventosa, A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiol.-Sgm 163, 623–645. https://doi.org/10.1099/mic.0.000463 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sidar, A. et al. Carbohydrate binding modules: Diversity of domain architecture in amylases and cellulases from filamentous microorganisms. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2020.00871 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehmann, C. et al. Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chem. 14, 2719–2726. https://doi.org/10.1039/c2gc35790a (2012).

    Article 
    CAS 

    Google Scholar
     

  • Grande, P. M. & de Maria, P. D. Enzymatic hydrolysis of microcrystalline cellulose in concentrated seawater. Bioresour. Technol. 104, 799–802. https://doi.org/10.1016/j.biortech.2011.10.071 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Indira, D., Sharmila, D., Balasubramanian, P., Thirugnanam, A. & Jayabalan, R. Utilization of sea water based media for the production and characterization of cellulase by Fusarium subglutinans MTCC 11891. Biocat. Agri. Biot. 7, 187–192. https://doi.org/10.1016/j.bcab.2016.06.006 (2016).

    Article 

    Google Scholar
     

  • Bano, A. et al. Purification and characterization of cellulase from obligate halophilic Aspergillus flavus (TISTR 3637) and its prospects for bioethanol production. Appl. Biochem. Biotechnol. 189, 1327–1337. https://doi.org/10.1007/s12010-019-03086-y (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasin, T. M. et al. A halotolerant endo-1,4-β-xylanase from aspergillus clavatus with potential application for agroindustrial residues saccharification. Appl. Biochem. Biotechnol. 191, 1111–1126. https://doi.org/10.1007/s12010-020-03232-x (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B., Al Rasheed, H., Ali, I. & Hu, S. L. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2020.124115 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Arakawa, T., Yamaguchi, R., Tokunaga, H. & Tokunaga, M. Unique features of halophilic proteins. Curr. Prot. Pept. Sci. 18, 65–71. https://doi.org/10.2174/1389203717666160617111140 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mevarech, M., Frolow, F. & Gloss, L. M. Halophilic enzymes: Proteins with a grain of salt. Biophys. Chem. 86, 155–164. https://doi.org/10.1016/s0301-4622(00)00126-5 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karan, R., Capes, M. D. & DasSarma, S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8, 1–15 (2012).

    Article 

    Google Scholar
     

  • Mu, Y. H. et al. Surface charge engineering of 6-glucosidase using rational design improves catalytic capacity and ionic liquid tolerance. J. Mol. Liquids https://doi.org/10.1016/j.molliq.2022.120577 (2022).

    Article 

    Google Scholar
     

  • Qiu, J. J., Han, R. & Wang, C. Microbial halophilic lipases: A review. J. Basic Microbiol. 61, 594–602. https://doi.org/10.1002/jobm.202100107 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mokashe, N., Chaudhari, B. & Patil, U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int. J. Biol. Macromol. 117, 493–522. https://doi.org/10.1016/j.ijbiomac.2018.05.217 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasirajan, L. & Maupin-Furlow, J. A. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol. Bioeng. 118, 1066–1090. https://doi.org/10.1002/bit.27639 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J. Q., Guo, C., Zhang, L. & Tian, C. G. Biochemical and functional characterization of a novel thermoacidophilic, heat and halo-ionic liquids tolerant endo-β-1,4-glucanase from saline-alkaline lake soil microbial metagenomic DNA. Int. J. Biol. Macromol. 118, 1035–1044. https://doi.org/10.1016/j.ijbiomac.2018.06.141 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha, S. K., Datta, M. & Datta, S. A glucose tolerant β-glucosidase from Thermomicrobium roseum that can hydrolyze biomass in seawater. Green Chem. 23, 7299–7311. https://doi.org/10.1039/d1gc01357b (2021).

    Article 
    CAS 

    Google Scholar