Search
Close this search box.

Full-length transcriptome analysis of a bloom-forming dinoflagellate Prorocentrum shikokuense (Dinophyceae) – Scientific Data

  • Bujak, J. P. & Williams, G. L. The evolution of dinoflagellates. Can. J. Bot. 59, 2077–2087 (1981).

    Article 

    Google Scholar
     

  • Gómez, F. A checklist and classification of living Dinoflagellates (Dinoflagellata, Alveolata). CICIMAR Oce. 27, 65–140 (2012).

    Article 

    Google Scholar
     

  • Rizzo, P. J. & Nooden, L. D. Chromosomal proteins in the dinoflagellate alga Gyrodinium cohnii. Science 176, 796–797 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haapala, O. & Soyer, M. O. Structure of dinoflagellate chromosomes. Nat. New Biol. 244, 195–197 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachvaroff, T. R. & Place, A. R. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS. One 3, e2929 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beauchemin, M. et al. Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. Proc. Natl. Acad. Sci. USA 109, 15793–15798 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erdner, D. L. & Anderson, D. M. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using massively parallel signature sequencing. BMC Genomics 7, 88 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waller, R. F. & Jackson, C. J. Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31, 237–245 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallegraeff, G. M. et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth & Environ. 2, 117 (2021).

    Article 

    Google Scholar
     

  • Takano, Y. & Matsuoka, K. A comparative study between Prorocentrum shikokuense and P. donghaiense (Prorocentrales, Dinophyceae) based on morphology and DNA sequences. Plankton Benthos Res. 6, 179–186 (2011).

    Article 

    Google Scholar
     

  • Lu, D. D. & Goebel, J. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chin. J. Oceanol. Limn. 19, 337–344 (2001).

    Article 

    Google Scholar
     

  • Lu, D. D. et al. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae 4, 493–505 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gu, H. F. et al. Emerging harmful algal bloom species over the last four decades in China. Harmful Algae 111, 102059 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shin, H. H. et al. Harmful dinoflagellate Prorocentrum donghaiense Lu is widely distributed along the East China Sea and Korean coastal area. Ocean Sci. J. 54, 685–691 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Madhu, N. V. et al. Phytoplankton characterisation in the Alappuzha mud banks during the pre-/post phases of a red-tide, Prorocentrum shikokuense Hada. Reg. Stud. Mar. Sci. 40, 101486 (2020).


    Google Scholar
     

  • Marampouti, C., Buma, A. G. J. & de Boer, M. K. Mediterranean alien harmful algal blooms: origins and impacts. Environ. Sci. Pollut. Res. 28, 3837–3851 (2021).

    Article 

    Google Scholar
     

  • Su, M. & Koike, K. A red tide off the Myanmar coast: morphological and genetic identification of the dinoflagellate composition. Harmful Algae 27, 149–158 (2013).

    Article 

    Google Scholar
     

  • Li, H. M., Tang, H. J., Shi, X. Y., Zhang, C. S. & Wang, X. L. Increased nutrient loads from the Changjiang (Yangtze) river have led to increased harmful algal blooms. Harmful Algae 39, 92–101 (2014).

    Article 

    Google Scholar
     

  • Huang, X. Z., Huang, B. Q., Chen, J. X. & Liu, X. Cellular responses of the dinoflagellate Prorocentrum donghaiense Lu to phosphate limitation and chronological ageing. J. Plankton Res. 38, 83–93 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z. X., Yu, R. C. & Zhou, M. J. Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: a numerical simulation study. Ecol. Model. 360, 150–162 (2017).

    Article 

    Google Scholar
     

  • Zhou, Z. X., Yu, R. C. & Zhou, M. J. Resolving the complex relationship between harmful algal blooms and environmental factors in the coastal waters adjacent to the Changjiang River estuary. Harmful Algae 62, 60–72 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y., Lu, S. H., Jiang, T. J., Xiao, Y. P. & You, S. P. Environmental factors and seasonal dynamics of Prorocentrum populations in Nanji Islands National Nature Reserve, East China Sea. Harmful Algae 10, 426–432 (2011).

    Article 

    Google Scholar
     

  • Hadjadji, I., Frehi, H., Ayada, L., Abadie, E. & Collos, Y. A comparative analysis of Alexandrium catenella/tamarense blooms in Annaba Bay (Algeria) and Thau lagoon (France); phosphorus limitation as a trigger. C.R. Biol. 337, 117–122 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, X., Zhang, H., Huang, B. & Lin, S. Alkaline phosphatase gene sequence characteristics and transcriptional regulation by phosphate limitation in Karenia brevis (Dinophyceae). Harmful Algae 17, 14–24 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeda, E. et al. A novel function of phosphate-mediated intracellular signal transduction pathways. Adv. Enzyme. Regul. 46, 154–161 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, S. J., Litaker, R. W. & Sunda, W. G. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52, 10–36 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. F., Yuan, C. J., Chen, Y., Lin, L. & Wang, D. Z. Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense. Sci. Total Environ. 692, 1037–1047 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, L. et al. Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom. Sci. Total Environ. 699, 134323 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, X. et al. Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate. ISME J. 11, 2209–2218 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. Z., Li, L., Shi, X. G., Lin, L. X. & Lin, S. J. Effects of phosphorus deficiency and adenosine 5′-triphosphate (ATP) on growth and cell cycle of the dinoflagellate Prorocentrum donghaiense. Harmful Algae 47, 35–41 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C., Chen, G., Wang, Y., Guo, C. & Zhou, J. Physiological and molecular responses of Prorocentrum donghaiense to dissolved inorganic phosphorus limitation. Mar. Pollut. Bull. 129, 562–572 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Z. X., Liu, Y. Y., Deng, Y. Y. & Tang, Y. Z. The notorious harmful algal blooms-forming dinoflagellate Prorocentrum donghaiense produces sexual resting cysts, which widely distribute along the coastal marine sediment of China. Front. Mar. Sci. 9, 826736 (2022).

    Article 

    Google Scholar
     

  • Gaonkar, C. C. & Campbell, L. De novo transcriptome assembly and gene annotation for the toxic dinoflagellate Dinophysis. Sci. Data 10, 345 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dougan, K. E. et al. Multi-omics analysis reveals the molecular response to heat stress in a “red tide” dinoflagellate. Genome Biol. 24, 265 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. J. et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350, 691–694 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun. Biol. 1, 95 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoguchi, E. et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, 1399–1408 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics. 19, 458 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, U. et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 5, eaav1110 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Comprehensive analysis of full-length transcriptomes of Schizothorax prenanti by single-molecule long-read sequencing. Genomics 114, 456–464 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdel-Ghany, S. et al. A survey of the sorghum transcriptome using single molecule long reads. Nat. Commun. 7, 11706 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genom. Proteom. Bioinf. 13, 278–289 (2015).

    Article 

    Google Scholar
     

  • Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic. Acids. Res. 46, 2159–2168 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, Y. Y. et al. Integrated NR database in protein annotation system and its localization. Comput. Eng. 32, 71–74 (2006).


    Google Scholar
     

  • Apweiler, R. et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, 115–119 (2004).

    Article 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatusov, R. L., Galperin, M. Y. & Natale, D. A. The COG database: a tool for genome scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koonin, E. V. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 5, R7 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F. et al. Gapped BLAST and PSI BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, L. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35, W345–W349 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. G. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41, e74 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T. et al. The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genom. Proteom. Bioinf. 19, 578–583 (2021).

    Article 

    Google Scholar
     

  • CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 50, D27–D38 (2022).

    Article 

    Google Scholar
     

  • Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA014836 (2024).