Search
Close this search box.

FOXO transcription factors as mediators of stress adaptation – Nature Reviews Molecular Cell Biology

  • Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, N. L., McColl, G. & Lithgow, G. J. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc. Biol. Sci. 271, 2523–2526 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005). This is one of the first papers to show that a single specific genetic mutation (daf-2) can increase lifespan and can be reverted by a second mutation (daf-16), revealing a connection between insulin signalling and lifespan.

    Article  CAS  PubMed  Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Willcox, B. J. et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA 105, 13987–13992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santo, E. E. et al. FOXO3A-short is a novel regulator of non-oxidative glucose metabolism associated with human longevity. Aging Cell 22, e13763 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Liang, R. & Ghaffari, S. Stem cells seen through the FOXO lens: an evolving paradigm. Curr. Top. Dev. Biol. 127, 23–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance physiologic oxid. stress. Cell 128, 325–339 (2007). This study shows the redundancy of FOXO1, FOXO3 and FOXO4 in HSC maintenance and that antioxidant defence downstream of FOXO is a key driver of stem cell maintenance.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa, I. et al. The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell 14, 707–709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, I. et al. FOXO protects against age-progressive axonal degeneration. Aging Cell 17, e12701 (2018).

    Article  PubMed  Google Scholar 

  • Du, S. et al. FoxO3 deficiency in cortical astrocytes leads to impaired lipid metabolism and aggravated amyloid pathology. Aging Cell 20, e13432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nat. Rev. Immunol. 12, 649–661 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Calissi, G., Lam, E. W. & Link, W. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Discov. 20, 21–38 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Brown, A. K. & Webb, A. E. Regulation of FOXO factors in mammalian cells. Curr. Top. Dev. Biol. 127, 165–192 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Franz, F. et al. The transcriptional regulation of FOXO genes in thyrocytes. Horm. Metab. Res. 48, 601–606 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Urbanek, P. & Klotz, L. O. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br. J. Pharmacol. 174, 1514–1532 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Asmamaw, M. D., Liu, Y., Zheng, Y. C., Shi, X. J. & Liu, H. M. Skp2 in the ubiquitin–proteasome system: a comprehensive review. Med. Res. Rev. 40, 1920–1949 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Brenkman, A. B., de Keizer, P. L., van den Broek, N. J., Jochemsen, A. G. & Burgering, B. M. Mdm2 induces mono-ubiquitination of FOXO4. PLoS ONE 3, e2819 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, H. & Tindall, D. J. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim. Biophys. Acta 1813, 1961–1964 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Wang, J. & Jiang, X. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J. Biol. Chem. 286, 23725–23734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman, S. R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat. Cell Biol. 3, 973–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006).

    Article  PubMed  Google Scholar 

  • Heimbucher, T. & Hunter, T. The C. elegans ortholog of USP7 controls DAF-16 stability in insulin/IGF-1-like signaling. Worm 4, e1103429 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kops, G. J. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999). This study and the study by Kops et al. (1999) are the first to show that the regulation of FOXOs, the orthologues of DAF-16 in mammalians, are directly controlled by AKT and PI3K signalling, thereby showing evolutionary conservation.

    Article  CAS  PubMed  Google Scholar 

  • Brownawell, A. M., Kops, G. J., Macara, I. G. & Burgering, B. M. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell Biol. 21, 3534–3546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Putker, M. et al. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling. Antioxid. Redox Signal. 22, 15–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Wang, F. et al. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J. Mol. Biol. 384, 590–603 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois, B. et al. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep. 36, 109446 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Obsil, T. & Obsilova, V. Structural basis for DNA recognition by FOXO proteins. Biochim. Biophys. Acta 1813, 1946–1953 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Li, J. et al. Mechanism of forkhead transcription factors binding to a novel palindromic DNA site. Nucleic Acids Res. 49, 3573–3583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psenakova, K. et al. Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells 8, 966 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker, B. A., Portman, J. J. & Wolynes, P. G. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl Acad. Sci. USA 97, 8868–8873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dansen, T. B. et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat. Chem. Biol. 5, 664–672 (2009). This study is among the first to show that redox signalling, similar to growth factor signalling, proceeds through protein–protein interactions that are enforced by redox-sensitive cysteine disulfide bridges.

    Article  CAS  PubMed  Google Scholar 

  • Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  • van der Horst, A. et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2. J. Biol. Chem. 279, 28873–28879 (2004).

    Article  PubMed  Google Scholar 

  • Yoshimochi, K., Daitoku, H. & Fukamizu, A. PCAF represses transactivation function of FOXO1 in an acetyltransferase-independent manner. J. Recept. Signal Transduct. Res. 30, 43–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Adamowicz, M., Vermezovic, J. & d’Adda di Fagagna, F. NOTCH1 inhibits activation of ATM by impairing the formation of an ATM-FOXO3a-KAT5/Tip60 complex. Cell Rep. 16, 2068–2076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004). This study, together with van der Horst et al. (2004) provides a mechanistic link between FOXO and SIRT, which were independently shown to affect lifespan.

    Article  CAS  PubMed  Google Scholar 

  • Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101, 10042–10047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng, A. H., Wu, L. H., Shieh, S. S. & Wang, D. L. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem. J. 464, 157–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daitoku, H., Sakamaki, J. & Fukamizu, A. Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim. Biophys. Acta 1813, 1954–1960 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Riedel, C. G. et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat. Cell Biol. 15, 491–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb, A. E. & Brunet, A. FOXO flips the longevity SWItch. Nat. Cell Biol. 15, 444–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Mattila, J., Kallijarvi, J. & Puig, O. RNAi screening for kinases and phosphatases identifies FoxO regulators. Proc. Natl Acad. Sci. USA 105, 14873–14878 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J. et al. Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat. Commun. 9, 5200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb, A. E., Kundaje, A. & Brunet, A. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 15, 673–685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, N. & O’Shea, E. K. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat. Struct. Mol. Biol. 19, 31–39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirbas, B. et al. Control of C. elegans growth arrest by stochastic, yet synchronized DAF-16/FOXO nuclear translocation pulses. Preprint at bioRxiv https://doi.org/10.1101/2023.07.05.547674 (2023).

  • Lasick, K. A. et al. FOXO nuclear shuttling dynamics are stimulus-dependent and correspond with cell fate. Mol. Biol. Cell 34, ar21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatta, M. & Cirillo, L. A. Chromatin opening and stable perturbation of core histone: DNA contacts by FoxO1. J. Biol. Chem. 282, 35583–35593 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hatta, M., Liu, F. & Cirillo, L. A. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1. Biochem. Biophys. Res. Commun. 379, 1005–1008 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Eijkelenboom, A., Mokry, M., Smits, L. M., Nieuwenhuis, E. E. & Burgering, B. M. FOXO3 selectively amplifies enhancer activity to establish target gene regulation. Cell Rep. 5, 1664–1678 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Allgayer, J., Kitsera, N., Bartelt, S., Epe, B. & Khobta, A. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine. Nucleic Acids Res. 44, 7267–7280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai, R. V. et al. A DNA repair pathway can regulate transcriptional noise to promote cell fate transitions. Science 373, eabc6506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raser, J. M. & O’Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183–187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, V. C. et al. NF-kappaB-chromatin interactions drive diverse phenotypes by modulating transcriptional noise. Cell Rep. 22, 585–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comandante-Lou, N., Baumann, D. G. & Fallahi-Sichani, M. AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells. Cell Rep. 40, 111147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Somel, M., Khaitovich, P., Bahn, S., Paabo, S. & Lachmann, M. Gene expression becomes heterogeneous with age. Curr. Biol. 16, R359–R360 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Rangaraju, S. et al. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. eLife 4, e08833 (2015).

    Google Scholar 

  • Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173, 1385–1397.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess, D. J. Human epigenetics: showing your age. Nat. Rev. Genet. 14, 6 (2013).

    Article  PubMed  Google Scholar 

  • Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielenbach, N. & Antebi, A. C. elegans Dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000). This study links FOXO function to inhibition of the cell cycle, thereby suggesting a role for FOXOs in tissue homeostasis and cancer.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa-Hibi, Y., Yoshida-Araki, K., Ohta, T., Ikeda, K. & Motoyama, N. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J. Biol. Chem. 277, 26729–26732 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hornsveld, M. et al. A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Rep. 34, 108675 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sekimoto, T., Fukumoto, M. & Yoneda, Y. 14-3-3 Suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J. 23, 1934–1942 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blain, S. W. & Massague, J. Breast cancer banishes p27 from nucleus. Nat. Med. 8, 1076–1078 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gao, D. et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat. Cell Biol. 11, 397–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shtivelman, E., Sussman, J. & Stokoe, D. A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle. Curr. Biol. 12, 919–924 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat. Cell Biol. 6, 1229–1235 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ou, L. et al. Incomplete folding upon binding mediates Cdk4/cyclin D complex activation by tyrosine phosphorylation of inhibitor p27 protein. J. Biol. Chem. 286, 30142–30151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grana, X., Garriga, J. & Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17, 3365–3383 (1998).

    Article  PubMed  Google Scholar 

  • Smith, E. J., Leone, G., DeGregori, J., Jakoi, L. & Nevins, J. R. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol. Cell Biol. 16, 6965–6976 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol. 22, 2025–2036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14, 458–470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Keizer, P. L. et al. Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res. 70, 8526–8536 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017). This paper shows that FOXOs can be a target for the specific elimination of senescent cells in order to mitigate age-related decline.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  CAS  PubMed  Google Scholar 

  • Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999). This is the first study to show that DAF-16 regulates the expression of antioxidant enzymes, providing a link between the free radical theory of ageing and DAF-16-dependent lifespan extension.

    Article  CAS  PubMed  Google Scholar 

  • Honda, Y. & Honda, S. Life span extensions associated with upregulation of gene expression of antioxidant enzymes in Caenorhabdms elegans; studies of mutation in the AGE-1, PI3 kinase homologue and short-term exposure to hyperoxia. J. Am. Aging Assoc. 24, 179–186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz, L. O. et al. Redox regulation of FoxO transcription factors. Redox Biol. 6, 51–72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Netto, L. E. S. & Machado, L. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J. 289, 5480–5504 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Snyder, N. A. & Silva, G. M. Deubiquitinating enzymes (DUBs): regulation, homeostasis, and oxidative stress response. J. Biol. Chem. 297, 101077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. & Hekimi, S. Mitochondrial dysfunction and longevity in animals: untangling the knot. Science 350, 1204–1207 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Van Raamsdonk, J. M. & Hekimi, S. Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl Acad. Sci. USA 109, 5785–5790 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoehne, M. N. et al. Spatial and temporal control of mitochondrial H(2) O(2) release in intact human cells. EMBO J. 41, e109169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeedi Saravi, S. S. et al. Differential endothelial signaling responses elicited by chemogenetic H(2)O(2) synthesis. Redox Biol. 36, 101605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross, D. N., van den Heuvel, A. P. & Birnbaum, M. J. The role of FoxO in the regulation of metabolism. Oncogene 27, 2320–2336 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Postic, C., Dentin, R. & Girard, J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab. 30, 398–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Altomonte, J. et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J. Clin. Invest. 114, 1493–1503 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastie, C. C. et al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. J. Biol. Chem. 280, 14222–14229 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kamei, Y. et al. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett. 536, 232–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Belgardt, B. F. et al. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab. 7, 291–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. S. et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci. 9, 901–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12, 534–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck, B., Ferber, E. C. & Schulze, A. Antagonism between FOXO and MYC regulates cellular powerhouse. Front. Oncol. 3, 96 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell Biol. 25, 6225–6234 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Z. et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat. Med. 15, 1307–1311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wang, K. et al. miR-484 regulates mitochondrial network through targeting Fis1. Nat. Commun. 3, 781 (2012).

    Article  PubMed  Google Scholar 

  • Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl Acad. Sci. USA 106, 5153–5158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Z. FoxO transcription factors in mitochondrial homeostasis. Biochem. J. 479, 525–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Martin, N., Sierra, R., Schimmang, T., Villa Del Campo, C. & Torres, M. Myc is dispensable for cardiomyocyte development but rescues Mycn-deficient hearts through functional replacement and cell competition. Development 146, dev170753 (2019).

    Article  PubMed  Google Scholar 

  • Muncan, V. et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell Biol. 26, 8418–8426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lettieri-Barbato, D. et al. FoxO1 localizes to mitochondria of adipose tissue and is affected by nutrient stress. Metabolism 95, 84–92 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Caballero, A. et al. Mitochondrial localization of the forkhead box class O transcription factor FOXO3a in brain. J. Neurochem. 124, 749–756 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty, R. P. & Chandel, N. S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28, 394–408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimovich, A. et al. Non-senescent hydra tolerates severe disturbances in the nuclear lamina. Aging 10, 951–972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, D. E. Mortality patterns suggest lack of senescence in hydra. Exp. Gerontol. 33, 217–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Boehm, A. M. et al. FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc. Natl Acad. Sci. USA 109, 19697–19702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge, D. et al. FoxO and stress responses in the cnidarian Hydra vulgaris. PLoS ONE 5, e11686 (2010). This is the first paper to show that FOXO is expressed in the cnidarian H. vulgaris, and that FOXO-dependent adaptation to stress was introduced early in animal evolution.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz, M. B. & Sinclair, D. A. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143, 3–14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik, J. H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Prat, L. et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat. Cell Biol. 22, 1307–1318 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wang, G. et al. p110alpha of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO J. 37, e98239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue, F. et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat. Commun. 8, 14328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Tothova, Z. & Gilliland, D. G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1, 140–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W. & DePinho, R. A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301, 215–218 (2003). This study establishes a link between FOXO function and fecundity in mice, thereby establishing a FOXO-dependent evolutionary conserved trade-off between fecundity and lifespan.

    Article  CAS  PubMed  Google Scholar 

  • Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148, 703–717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannakou, M. E. et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Schaffner, I. et al. FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron 99, 1188–1203.e6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo, H. et al. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J. 32, 2589–2602 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopinath, S. D., Webb, A. E., Brunet, A. & Rando, T. A. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep. 2, 414–426 (2014). This paper, together with Garcia-Prat et al. (2020), shows the role of FOXOs and redox regulation in quiescent adult (muscle) stem cells.

    Article  CAS  Google Scholar 

  • Zhang, L., Issa Bhaloo, S., Chen, T., Zhou, B. & Xu, Q. Role of resident stem cells in vessel formation and arteriosclerosis. Circ. Res. 122, 1608–1624 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, J. et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat. Cell Biol. 23, 413–423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. & Schofield, C. J. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem. 87, 585–620 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Charitou, P. et al. FOXOs support the metabolic requirements of normal and tumor cells by promoting IDH1 expression. EMBO Rep. 16, 456–466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. & Wong, P. K. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cell 27, 1987–1998 (2009).

    Article  CAS  Google Scholar 

  • Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017–3028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Colman, M. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017). One of the first studies that shows metabolic crosstalk between niche and stem cells, thereby showing that next to growth factors, metabolites also act as crucial signalling molecules in stem cell maintenance.

    Article  CAS  PubMed  Google Scholar 

  • Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin, D. I. et al. Fasting induces a highly resilient deep quiescent state in muscle stem cells via ketone body signaling. Cell Metab. 34, 902–918.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020). This study shows how FOXO can sense the metabolic environment and, in response, specify cell differentiation.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki, T. et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl Med 10, eaan0746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludikhuize, M. C. et al. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/Notch axis. Cell Metab. 32, 889–900.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165, 1708–1720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z. et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J. Exp. Med. 218, e20210324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12, 665–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Hornsveld, M. et al. FOXO transcription factors both suppress and support breast cancer progression. Cancer Res. 78, 2356–2369 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Sykes, S. M. et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146, 697–708 (2011). This is the first study to show that FOXOs not only act as tumour suppressor but also promote tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  • Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 598, 473–478 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, L. B. & Chandel, N. S. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kensler, T. W. & Wakabayashi, N. Nrf2: friend or foe for chemoprevention. Carcinogenesis 31, 90–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly, D. R. p53 and transformation by SV40. Biol. Cell 57, 187–196 (1986).

    Article  PubMed  Google Scholar 

  • Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–828 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F. et al. Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc. Natl Acad. Sci. USA 109, 6078–6083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F. et al. Synergistic interplay between promoter recognition and CBP/p300 coactivator recruitment by FOXO3a. ACS Chem. Biol. 4, 1017–1027 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Feringa, F. M. et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat. Commun. 7, 12618 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin, C. F. & Yeong, F. M. Safeguarding entry into mitosis: the antephase checkpoint. Mol. Cell Biol. 30, 22–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Shats, I. et al. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res. 73, 6056–6067 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Krenning, L., Feringa, F. M., Shaltiel, I. A., van den Berg, J. & Medema, R. H. Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol. Cell 55, 59–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Krenning, L., van den Berg, J. & Medema, R. H. Life or death after a break: what determines the choice. Mol. Cell 76, 346–358 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Rim, E. Y., Clevers, H. & Nusse, R. The wnt pathway: from signaling mechanisms to synthetic modulators. Annu. Rev. Biochem. 91, 571–598 (2022).

    Article  PubMed  Google Scholar 

  • Daniels, D. L. & Weis, W. I. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12, 364–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hoogeboom, D. et al. Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J. Biol. Chem. 283, 9224–9230 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Almeida, M., Han, L., Martin-Millan, M., O’Brien, C. A. & Manolagas, S. C. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem. 282, 27298–27305 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. et al. Wnt signaling regulates hepatic metabolism. Sci. Signal. 4, ra6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, T., van Soest, D. M. K., Polderman, P. E., Burgering, B. M. T. & Dansen, T. B. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic. Biol. Med. 172, 298–311 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Lemus, E. & Davies, M. J. Effect of crowding, compartmentalization and nanodomains on protein modification and redox signaling — current state and future challenges. Free Radic. Biol. Med. 196, 81–92 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Marabelli, C., Marrocco, B. & Mattevi, A. The growing structural and functional complexity of the LSD1/KDM1A histone demethylase. Curr. Opin. Struct. Biol. 41, 135–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Bai, J. et al. Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. Proc. Natl Acad. Sci. USA 117, 4169–4179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, K., Yamaguchi, T., Natsume, T., Kufe, D. & Miki, Y. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat. Cell Biol. 7, 278–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, B. L. et al. A peroxidase peroxiredoxin 1-specific redox regulation of the novel FOXO3 microRNA target let-7. Antioxid. Redox Signal. 28, 62–77 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, H. & Chandel, N. S. Regulation of redox balance in cancer and T cells. J. Biol. Chem. 293, 7499–7507 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Bansal, A. et al. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longev. Healthspan 3, 5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859–871 (2006).

    Article  CAS  PubMed  Google Scholar