Search
Close this search box.

Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation – Nature Communications

  • Zimmerman, S. B. & Trach, S. O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222, 599–620 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Han, J. & Herzfeld, J. Macromolecular diffusion in crowded solutions. Biophys. J. 65, 1155–1161 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman, S. B. & Minton, A. P. Macromolecular crowding: biochemical, biophysical, and physiological onsequences. Annu. Rev. Biophys. Biomol. Struct. 22, 27–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Record, M. T., Courtenay, E. S., Cayley, S. & Guttman, H. J. Biophysical compensation mechanisms buffering E. coli protein–nucleic acid interactions against changing environments. Trends Biochem. Sci. 23, 190–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melcer, S. et al. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat. Commun. 3, 910 (2012).

    Article  ADS  PubMed  Google Scholar 

  • Bošković, A. et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 28, 1042–1047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallm, J.-P. et al. Glioblastoma initiating cells are sensitive to histone demethylase inhibition due to epigenetic deregulation. Int. J. Cancer 146, 1281–1292 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger, S. & Meshorer, E. Open chromatin, epigenetic plasticity, and nuclear organization in pluripotency. Dev. Cell 48, 135–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Rippe, K. Liquid-liquid phase separation in chromatin. Cold Spring Harbor Perspect. Biol. https://doi.org/10.1101/cshperspect.a040683 (2021).

  • Maeshima, K., Ide, S., Hibino, K. & Sasai, M. Liquid-like behavior of chromatin. Curr. Opin. Genet. Dev. 37, 36–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Strickfaden, H. et al. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell 183, 1772–1784.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 Lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zeng, W., Ball, A. R. Jr & Yokomori, K. HP1: Heterochromatin binding proteins working the genome. Epigenetics 5, 287–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Nava, S., Nieto-Caballero, V. E., Zurita, M. & Valadez-Graham, V. Insights into HP1a-chromatin interactions. Cells 9, 1866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thierry, C. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    Article  Google Scholar 

  • Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299, 719–721 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kilic, S., Bachmann, A. L., Bryan, L. C. & Fierz, B. Multivalency governs HP1α association dynamics with the silent chromatin state. Nat. Commun. 6, 7313 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kilic, S. et al. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Nat. Commun. 9, 235 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Verschure, P. J. et al. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol. Cell. Biol. 25, 4552–4564 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keenen, M. M. et al. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 10, e64563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strom, A. R. et al. HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. eLife 10, e63972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation. Mol. Cell 78, 236–249.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzzopappa, F. et al. Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching. Nat. Commun. 13, 7787 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-García, P. A. et al. Mesoscale modeling and single-nucleosome tracking reveal remodeling of clutch folding and dynamics in stem cell differentiation. Cell Rep. 34, 108614 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Novo, C. L. et al. Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nat. Commun. 13, 3525 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Alberti, S. Phase separation in biology. Curr. Biol. 27, R1097–R1102 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Burgos, I., Joseph, J. A., Collepardo-Guevara, R. & Espinosa, J. R. Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Sci. Rep. 11, 15241 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren, S. C., Margineanu, A., Katan, M., Dunsby, C. & French, P. M. W. Homo-FRET based biosensors and their application to multiplexed imaging of signalling events in live cells. Int. J. Mol. Sci. 16, 14695–14716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochmair, J. et al. Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates. EMBO J. 41, e108882 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu, X., Shaner, N. C., Yarbrough, C. A., Tsien, R. Y. & Remington, S. J. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–9647 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Arpino, J. A. J., Rizkallah, P. J. & Jones, D. D. Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222. PLoS One 7, e47132–e47132 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanenko, O. V., Stepanenko, O. V., Kuznetsova, I. M., Verkhusha, V. V. & Turoverov, K. K. Beta-Barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. Int. Rev. Cell Mol. Biol. 302, 221–278 (2013).

  • Branca, C. et al. Tetrahedral order in homologous disaccharide-water mixtures. J. Chem. Phys. 122, 174513 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chung, S. et al. The effect of macromolecular crowding on single-round transcription by Escherichia coli RNA polymerase. Nucleic Acids Res. 47, 1440–1450 (2018).

    Article  PubMed Central  Google Scholar 

  • Wang, X. et al. Polyethylene glycol Crowder’s effect on enzyme aggregation, thermal stability, and residual catalytic activity. Langmuir 37, 8474–8485 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sung, H.-L., Sengupta, A. & Nesbitt, D. Smaller molecules crowd better: Crowder size dependence revealed by single-molecule FRET studies and depletion force modeling analysis. J. Chem. Phys. 154, 155101 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Seefeldt, B. et al. Fluorescent proteins for single-molecule fluorescence applications. J. Biophotonics 1, 74–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Štefl, M., Herbst, K., Rübsam, M., Benda, A. & Knop, M. Single-color fluorescence lifetime cross-correlation spectroscopy in vivo. Biophys. J. 119, 1359–1370 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Pepperkok, R., Squire, A., Geley, S. & Bastiaens, P. I. H. Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr. Biol. 9, 269–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sarkisyan, K. S. et al. Green fluorescent protein with Anionic tryptophan-based chromophore and long fluorescence lifetime. Biophys. J. 109, 380–389 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikal, A. A., Hess, S. T., Baird, G. S., Tsien, R. Y. & Webb, W. W. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc. Natl Acad. Sci. USA 97, 11996–12001 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein: Mechanism and Applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rizzo, M. A., Springer, G. H., Granada, B. & Piston, D. W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wiens, M. D., Hoffmann, F., Chen, Y. & Campbell, R. E. Enhancing fluorescent protein photostability through robot-assisted photobleaching. Integr. Biol. 10, 419–428 (2018).

    Article  CAS  Google Scholar 

  • Kolská, Z., Valha, P., Slepička, P. & Švorčík, V. Refractometric study of systems water-poly(ethylene glycol) for preparation and characterization of Au nanoparticles dispersion. Arab. J. Chem. 12, 5019–5027 (2019).

    Article  Google Scholar 

  • van Manen, H.-J. et al. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys. J. 94, L67–L69 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Söhnel, A.-C. et al. Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution. Biochim. Biophys. Acta Bioenerg. 1857, 1290–1299 (2016).

    Article  Google Scholar 

  • Grange, B. W., Stevenson, W. H. & Viskanta, R. Refractive index of liquid solutions at low temperatures: an accurate measurement. Appl. Opt. 15, 858–859 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lakowicz, J. R. in Principles of Fluorescence Spectroscopy (ed. Lakowicz, J. R.) 291–319 (Springer US, 1999).

  • Yang, L. et al. Role of hydrogen bonding in green fluorescent protein-like chromophore emission. Sci. Rep. 9, 11640 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Regmi, C. K., Bhandari, Y. R., Gerstman, B. S. & Chapagain, P. P. Exploring the diffusion of molecular oxygen in the red fluorescent protein mCherry using explicit oxygen molecular dynamics simulations. J. Phys. Chem. B 117, 2247–2253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuta, H. et al. Aqueous/aqueous micro phase separation: construction of an artificial model of cellular assembly. Front. Chem. 7, 44 (2019).

  • Annunziata, O. et al. Effect of polyethylene glycol on the liquid–liquid phase transition in aqueous protein solutions. Proc. Natl Acad. Sci. USA 99, 14165 LP–14114170 (2002).

    Article  ADS  Google Scholar 

  • Park, S. et al. Dehydration entropy drives liquid-liquid phase separation by molecular crowding. Commun. Chem. 3, 83 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, P. S. L. & Meshorer, E. Organization of the pluripotent genome. Cold Spring Harb. Perspect. Biol. 13, a040204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farr, S. E., Woods, E. J., Joseph, J. A., Garaizar, A. & Collepardo-Guevara, R. Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions. Nat. Commun. 12, 2883 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattout, A. et al. Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol. 16, 213 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Harikumar, A. et al. An endogenously tagged fluorescent fusion protein library in mouse embryonic stem cells. Stem Cell Rep. 9, 1304–1314 (2017).

    Article  CAS  Google Scholar 

  • Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5, 296–305 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Aoto, T., Saitoh, N., Ichimura, T., Niwa, H. & Nakao, M. Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation. Dev. Biol. 298, 354–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efroni, S. et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2, 437–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst, A. V. et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19, 625–638 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Bacia, K. & Schwille, P. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29, 74–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. A., Heinze, K. G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nat. Methods 4, 963–973 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, N. O., Wei, M.-T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Boersma, A. J., Zuhorn, I. S. & Poolman, B. A sensor for quantification of macromolecular crowding in living cells. Nat. Methods 12, 227–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Liu, B. et al. Design and properties of genetically encoded probes for sensing macromolecular crowding. Biophys. J. 112, 1929–1939 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. et al. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus 13, 1–34 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepanenko, O. V. et al. Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, “dimer2”, and DsRed1. Biochemistry 43, 14913–14923 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Voliani, V. et al. Cis−trans photoisomerization of fluorescent-protein chromophores. J. Phys. Chem. B 112, 10714–10722 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rafiq, S., Rajbongshi, B. K., Nair, N. N., Sen, P. & Ramanathan, G. Excited state relaxation dynamics of model green fluorescent protein chromophore analogs: evidence for cis–trans isomerism. J. Phys. Chem. A 115, 13733–13742 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Mooney, C. R. S. et al. Taking the green fluorescence out of the protein: dynamics of the isolated GFP chromophore anion. Chem. Sci. 4, 921–927 (2013).

    Article  CAS  Google Scholar 

  • Conyard, J. et al. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple. Chem. Sci. 9, 1803–1812 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, C. M., List, N. H. & Martínez, T. J. Resolving the ultrafast dynamics of the anionic green fluorescent protein chromophore in water. Chem. Sci. 12, 11347–11363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S., Ahire, K. & Karuso, P. Room-temperature dual fluorescence of a locked green fluorescent protein chromophore analogue. J. Am. Chem. Soc. 142, 738–749 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Nienhaus, K., Nar, H., Heilker, R., Wiedenmann, J. & Nienhaus, G. U. Trans−cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611. J. Am. Chem. Soc. 130, 12578–12579 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Romei, M. G., Lin, C.-Y., Mathews, I. I. & Boxer, S. G. Electrostatic control of photoisomerization pathways in proteins. Science 367, 76–79 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, J. R., Ross, S. T. & Davidson, M. W. Single molecule localization microscopy for superresolution. J. Opt. 15, 094001 (2013).

    Article  ADS  CAS  Google Scholar 

  • Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Prim. 1, 39–39 (2021).

    Article  CAS  Google Scholar 

  • Hendrix, J., Flors, C., Dedecker, P., Hofkens, J. & Engelborghs, Y. Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys.J. 94, 4103–4113 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoddard, A. & Rolland, V. I see the light! Fluorescent proteins suitable for cell wall/apoplast targeting in Nicotiana benthamiana leaves. Plant Direct 3, e00112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya, D., Talwar, S., Mazumder, A. & Shivashankar, G. V. Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys. J. 96, 3832–3839 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozumi, Y. et al. Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J. Mol. Cell Biol. 8, 349–362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christogianni, A. et al. Heterochromatin remodeling in embryonic stem cells proceeds through stochastic de-stabilization of regional steady-states. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 661–673 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ackermann, B. E. & Debelouchina, G. T. Heterochromatin protein HP1α gelation dynamics revealed by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 58, 6300–6305 (2019).

    Article  CAS  Google Scholar 

  • Dupont, C. et al. Evidence for low nanocompaction of heterochromatin in living embryonic stem cells. EMBO J. n/a, e110286 (2023).

    Article  Google Scholar 

  • Guthmann, M. et al. A change in biophysical properties accompanies heterochromatin formation in mouse embryos. Genes Dev. https://doi.org/10.1101/gad.350353.122 (2023).

  • Nozaki, T. et al. Condensed but liquid-like domain organization of active chromatin regions in living human cells. Sci. Adv. 9, eadf1488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877 LP–7877882 (2002).

    Article  ADS  Google Scholar 

  • Hülya. K. et al. Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization. Int. Adv. Res. Eng. J. 3, 20–25 (2019).

  • Beechem, J. M. & Haas, E. Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements. Biophys. J. 55, 1225–1236 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, F. et al. Time-resolved fluorescence resonance energy transfer study shows a compact denatured state of the B domain of protein A. Biochemistry 48, 3468–3476 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Song, L., Hennink, E. J., Young, I. T. & Tanke, H. J. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcu, L., Grundfest, W. S. & Maarek, J.-M. I. Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation. Photochem. Photobiol. 69, 713–721 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Fiser, A., Do, R. K. G. & Šali, A. Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, M. & Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Article  ADS  CAS  Google Scholar 

  • Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  ADS  Google Scholar 

  • Regmi, C. K. Structural Flexibility and Oxygen Diffusion Pathways in Monomeric Fluorescent Proteins. https://digitalcommons.fiu.edu/dissertations/AAI3632553 (2014).

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  • MacKerell, A. D. Jr. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  ADS  PubMed  Google Scholar 

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  ADS  CAS  Google Scholar 

  • Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  ADS  CAS  Google Scholar 

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-987X%28199709%2918%3A12%3C1463%3A%3AAID-JCC4%3E3.0.CO%3B2-H” aria-label=”Article reference 112″ data-doi=”10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H”>Article  CAS  Google Scholar 

  • Miyamoto, S. & Kollman, P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Article  CAS  Google Scholar 

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  ADS  CAS  Google Scholar 

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Q.-Y., Park, J., & Koltun, V. Open3D: A Modern Library for 3D Data Processing. Preprint at https://doi.org/10.48550/arXiv.1801.09847 (2018).

  • Latest Intelligence