Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells – Leukemia

  • Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434:365–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao G, Li J, Zhang Y, Chang YZ. Cellular iron metabolism and regulation. Adv Exp Med Biol. 2019;1173:21–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int. 2017;21:S6–S20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:997–1030.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41:274–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldfarb AN, Freeman KC, Sahu RK, Elagib KE, Holy M, Arneja A, et al. Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nat Commun. 2021;12:1645.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • al-Rafaie FN, Wilkes S, Wonke B, Hoffbrand AV. The effect of deferiprone (L1) and desferrioxamine on myelopoiesis using a liquid culture system. Br J Haematol. 1994;87:196–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan N, Downey J, Sanz J, Kaufmann E, Blankenhaus B, Pacis A, et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell. 2020;183:752–70.e22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q, et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell. 2014;15:507–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertoli S, Paubelle E, Berard E, Saland E, Thomas X, Tavitian S, et al. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol. 2019;102:131–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urrutia PJ, Mena NP, Nunez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014;5:38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward DM, Cloonan SM. Mitochondrial Iron in Human Health and Disease. Annu Rev Physiol. 2019;81:453–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, et al. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med. 2016;8:247–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7:118–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and Iron: current questions. Expert Rev Hematol. 2017;10:65–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, et al. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail. 2017;19:522–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morganti C, Ito K. Mitochondrial Contributions to Hematopoietic Stem Cell Aging. Int J Mol Sci. 2021;22.

  • Wang N, Yin J, You N, Yang S, Guo D, Zhao Y, et al. TWIST1 preserves hematopoietic stem cell function via the CACNA1B/Ca2+/mitochondria axis. Blood. 2021;137:2907–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filippi MD, Ghaffari S. Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood. 2019;133:1943–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shvartsman M, Kikkeri R, Shanzer A, Cabantchik ZI. Non-transferrin-bound iron reaches mitochondria by a chelatorinaccessible mechanism: biological and clinical implications. Am J Physiol Cell Physiol. 2007;293:C1383–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber S, Parmon A, Kurrle N, Schnutgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol. 2020;11:627662.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yassin MA, Soliman A, De Sanctis V, Hmissi SM, Abdulla MAJ, Ekeibed Y, et al. The Impact of Iron Overload in Patients with Acute Leukemia and Myelodysplastic Syndrome on Hepatic and Endocrine functions. Acta Biomed. 2018;89:18–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang F, Lv H, Zhao B, Zhou L, Wang S, Luo J, et al. Iron and leukemia: new insights for future treatments. J Exp Clin Cancer Res. 2019;38:406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, et al. Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circ Res. 2020;127:486–501.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 2002;33:1037–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93:1721–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Jiang Z, Li T, Wei X, Zheng Y, Wu D, et al. Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol Cancer. 2015;14:26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du J, Chen Y, Li Q, Han X, Cheng C, Wang Z, et al. HIF-1alpha deletion partially rescues defects of hematopoietic stem cell quiescence caused by Cited2 deficiency. Blood. 2012;119:2789–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J. 1999;18:4754–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Stefano B, Collombet S, Jakobsen JS, Wierer M, Sardina JL, Lackner A, et al. C/EBPalpha creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4. Nat Cell Biol. 2016;18:371–81.

    Article 
    PubMed 

    Google Scholar
     

  • Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M, et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell. 2012;47:810–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li D, Hsu S, Purushotham D, Sears RL, Wang T. WashU Epigenome Browser update 2019. Nucleic Acids Res. 2019;47:W158–W65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Gao X, Li H, Borger DK, Wei Q, Yang E, et al. The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell. 2022;29:232–47 e7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu A, Feng B, Yu J, Yan L, Che L, Zhuo Y, et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol. 2021;46:102131.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sukumaran A, Chang J, Han M, Mintri S, Khaw BA, Kim J. Iron overload exacerbates age-associated cardiac hypertrophy in a mouse model of hemochromatosis. Sci Rep. 2017;7:5756.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Lee J, Liem D, Ping P. HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene. 2017;618:14–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy. 2013;9:1937–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minoia M, Grit C, Kampinga HH. HSPA1A-independent suppression of PARK2 C289G protein aggregation by human small heat shock proteins. Mol Cell Biol. 2014;34:3570–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabdano SO, Izmailov SA, Luzik DA, Groves A, Podkorytov IS, Skrynnikov NR. Onset of disorder and protein aggregation due to oxidation-induced intermolecular disulfide bonds: case study of RRM2 domain from TDP-43. Sci Rep. 2017;7:11161.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebastian VP, Salazar GA, Coronado-Arrazola I, Schultz BM, Vallejos OP, Berkowitz L, et al. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front Immunol. 2018;9:1956.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys. 2018;640:47–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasai S, Mimura J, Ozaki T, Itoh K. Emerging Regulatory Role of Nrf2 in Iron, Heme, and Hemoglobin Metabolism in Physiology and Disease. Front Vet Sci. 2018;5:242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12:446–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20:833–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA. 2005;102:105–10.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K, et al. Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell. 2008;31:255–65 43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, He X, Wu Q, Jiang L, Chen L, Yu Y, et al. Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis. Haematologica. 2020;105:2071–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang K, Wang M, Liao X, Gao S, Hua J, Wu X, et al. Locally organised and activated Fth1hi neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner. Nat Commun. 2022;13:7703.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegert I, Schodel J, Nairz M, Schatz V, Dettmer K, Dick C, et al. Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia- Inducible Factor-1alpha upon LPS Activation in the Presence of Ample Oxygen. Cell Rep. 2015;13:2048–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerins MJ, Vashisht AA, Liang BX, Duckworth SJ, Praslicka BJ, Wohlschlegel JA, et al. Fumarate mediates a chronic proliferative signal in fumarate hydratase-inactivated cancer cells by increasing transcription and translation of ferritin genes. Mol Cell Biol. 2017;3 7:e00079–17.


    Google Scholar
     

  • Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014;16:1069–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105–9.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muto Y, Nishiyama M, Nita A, Moroishi T, Nakayama KI. Essential role of FBXL5-mediated cellular iron homeostasis in maintenance of hematopoietic stem cells. Nat Commun. 2017;8:16114.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao J, Jia Y, Mahmut D, Deik AA, Jeanfavre S, Clish CB, et al. Human hematopoietic stem cell vulnerability to ferroptosis. Cell. 2023;186:732–47 e16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W, et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis. 2021;12:706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao YR, Chen J, Narayanagari SR, Todorova TI, Aivalioti MM, Ferreira M, et al. Thrombopoietin receptor-independent stimulation of hematopoietic stem cells by eltrombopag. Sci Transl Med. 2018;10.

  • He H, Qiao Y, Zhou Q, Wang Z, Chen X, Liu D, et al. Iron Overload Damages the Endothelial Mitochondria via the ROS/ADMA/DDAHII/eNOS/NO Pathway. Oxid Med Cell Longev. 2019;2019:2340392.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tam E, Sung HK, Lam NH, You S, Cho S, Ahmed SM, et al. Role of Mitochondrial Iron Overload in Mediating Cell Death in H9c2 Cells. Cells. 2022;12.

  • Villalpando-Rodriguez GE, Gibson SB. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxid Med Cell Longev. 2021;2021:9912436.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8:2003–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • del Rey M, Benito R, Fontanillo C, Campos-Laborie FJ, Janusz K, Velasco-Hernandez T, et al. Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts. PLoS One. 2015;10:e0126555.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth M, Will B, Simkin G, Narayanagari S, Barreyro L, Bartholdy B, et al. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood. 2012;120:386–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuno S, Fujita H, Tanaka YK, Ogra Y, Iwai K. Iron-induced NCOA4 condensation regulates ferritin fate and iron homeostasis. EMBO Rep. 2022;23:e54278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu K, Lang Z, Zhan Y, Tao Q, Yu Z, Chen L, et al. A novel 10-gene ferroptosis-related prognostic signature in acute myeloid leukemia. Front Oncol. 2022;12:1023040.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao Y-R, Chen J, Kumari R, Tatiparthy M, Ma Y, Aivalioti MM, et al. Cytoplasmic labile iron accumulates in aging stem cells perturbing a key rheostat for identity control. bioRxiv. 2021;08.03.454947

  • Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 2013;41:D56–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024;52:D174–D182.

    Article 
    PubMed 

    Google Scholar