Search
Close this search box.

Fenofibrate reduces glucose-induced barrier dysfunction in feline enteroids – Scientific Reports

  • Kaufman, F. R. Type 2 diabetes mellitus in children and youth: a new epidemic. J. Pediatr. Endocrinol. Metab. 15(Suppl 2), 737–744 (2002).

    PubMed 

    Google Scholar
     

  • Hospital, B.P., State of Pet Health 2016 Report, in State of Pet Health Report. 2016, Banfield Pet Hospital.

  • Lederer, R. et al. Frequency of feline diabetes mellitus and breed predisposition in domestic cats in Australia. Vet. J. 179(2), 254–258 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lutz, T. A. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat. Rev. Endocrinol. 19(6), 350–360 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kol, A. et al. Companion animals: Translational scientist’s new best friends. Sci. Transl. Med. 7(308), 308ps21 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meldgaard, T. et al. Diabetic enteropathy: from molecule to mechanism-based treatment. J. Diabetes Res. 2018, 3827301 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott-Moncrieff, J. C. Insulin resistance in cats. Vet. Clin. North Am. Small Anim. Pract. 40(2), 241–257 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359(6382), 1376–1383 (2018).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Barrett, K. E. New ways of thinking about (and teaching about) intestinal epithelial function. Adv. Physiol. Educ. 32(1), 25–34 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Vancamelbeke, M. & Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 11(9), 821–834 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Groschwitz, K. R. & Hogan, S. P. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124(1), 3–20 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Citi, S. et al. Cingulin, a new peripheral component of tight junctions. Nature 333(6170), 272–276 (1988).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Furuse, M. et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141(7), 1539–1550 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Furuse, M. et al. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123(6 Pt 2), 1777–1788 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Suzuki, T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J. 91(1), e13357 (2020).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuitunen, M. et al. Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35(5), 365–368 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mooradian, A. D. et al. Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 29(4), 221–224 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Amar, J. et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54(12), 3055–3061 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Damci, T. et al. Increased intestinal permeability as a cause of fluctuating postprandial blood glucose levels in Type 1 diabetic patients. Eur. J. Clin. Invest. 33(5), 397–401 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Selby, A. et al. Pathophysiology, differential diagnosis, and treatment of diabetic Diarrhea. Dig. Dis. Sci. 64(12), 3385–3393 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Francis, K.L., et al., 1357-P: Diabetic Hyperglycemia impairs intestinal barrier function in the setting of diet-induced obesity. Diabetes 71(Supplement_1) (2022).

  • Do, M.H., et al., High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10(6) (2018).

  • Crakes, K. R. et al. Fenofibrate promotes PPARalpha-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus. Sci. Rep. 11(1), 13454 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Sidhu, G. & Tripp, J. Fenofibrate (StatPearls Publishing, 2023).


    Google Scholar
     

  • Emami, F. et al. Fenofibrate-induced renal dysfunction, yes or no?. J. Res. Med. Sci. 25, 39 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Keating, G. M. & Croom, K. F. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs 67(1), 121–153 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Knickelbein, J. E., Abbott, A. B. & Chew, E. Y. Fenofibrate and diabetic retinopathy. Curr. Diab. Rep. 16(10), 90 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsunoda, F. et al. Fenofibrate, HDL, and cardiovascular disease in Type-2 diabetes: The DAIS trial. Atherosclerosis 247, 35–39 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bajwa, P. J. et al. Fenofibrate inhibits intestinal Cl- secretion by blocking basolateral KCNQ1 K+ channels. Am. J. Physiol. Gastrointest Liver Physiol. 293(6), G1288–G1299 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Braissant, O. et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137(1), 354–366 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bunger, M. et al. Genome-wide analysis of PPARalpha activation in murine small intestine. Physiol. Genom. 30(2), 192–204 (2007).

    Article 

    Google Scholar
     

  • Kersten, S. Integrated physiology and systems biology of PPARalpha. Mol. Metab. 3(4), 354–371 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Azuma, Y. T. et al. PPARalpha contributes to colonic protection in mice with DSS-induced colitis. Int. Immunopharmacol. 10(10), 1261–1267 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Crakes, K. R. et al. PPARalpha-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host-microbe intersection during SIV infection. Proc. Natl. Acad. Sci. USA 116(49), 24819–24829 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • de Vogel-van den Bosch, H. M. et al. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genom. 9, 231 (2008).

    Article 

    Google Scholar
     

  • Zachos, N. C. et al. Human Enteroids/Colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291(8), 3759–3766 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Crawford, C. K. et al. Inflammatory cytokines directly disrupt the bovine intestinal epithelial barrier. Sci. Rep. 12(1), 14578 (2022).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Tekes, G., et al., Development of feline ileum- and colon-derived organoids and their potential use to support feline coronavirus infection. Cells. 9(9) (2020).

  • Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8(12), 2471–2482 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Powell, R. H. & Behnke, M. S. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biol. Open 6(5), 698–705 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schmidl, S. et al. Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci. Rep. 11(1), 13751 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Grosheva, I. et al. High-throughput screen identifies host and microbiota regulators of intestinal barrier function. Gastroenterology 159(5), 1807–1823 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tokuda, S., Higashi, T. & Furuse, M. ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape. PLoS One 9(8), e104994 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • El-Remessy, A. B. et al. High glucose-induced tyrosine nitration in endothelial cells: role of eNOS uncoupling and aldose reductase activation. Invest. Ophthalmol. Vis. Sci. 44(7), 3135–3143 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Young, T. K., Lee, S. C. & Tai, L. N. Mannitol absorption and excretion in uremic patients regularly treated with gastrointestinal perfusion. Nephron 25(3), 112–116 (1980).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mullin, J. M. et al. Increased tight junction permeability can result from protein kinase C activation/translocation and act as a tumor promotional event in epithelial cancers. Ann. N. Y. Acad. Sci. 915, 231–236 (2000).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Rosson, D. et al. Protein kinase C-alpha activity modulates transepithelial permeability and cell junctions in the LLC-PK1 epithelial cell line. J. Biol. Chem. 272(23), 14950–14953 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ali, F. Y. et al. Antiplatelet actions of statins and fibrates are mediated by PPARs. Arterioscler. Thromb. Vasc. Biol. 29(5), 706–711 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Turner, J. R. et al. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am. J. Physiol. 273(4), C1378–C1385 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Thorens, B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58(2), 221–232 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Filippello, A., et al. High glucose exposure impairs l-cell differentiation in intestinal organoids: Molecular mechanisms and clinical implications. Int. J. Mol. Sci. 22(13) (2021).

  • Forcheron, F. et al. Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 51(12), 3486–3491 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Serisier, S. et al. Fenofibrate lowers lipid parameters in obese dogs. J. Nutr. 136(7 Suppl), 2037S-2040S (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mazzon, E. & Cuzzocrea, S. Absence of functional peroxisome proliferator-activated receptor-alpha enhanced ileum permeability during experimental colitis. Shock 28(2), 192–201 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mazzon, E. & Cuzzocrea, S. Role of TNF-alpha in ileum tight junction alteration in mouse model of restraint stress. Am. J. Physiol. Gastrointest Liver Physiol. 294(5), G1268–G1280 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grabacka, M., et al., The role of PPAR alpha in the modulation of innate immunity. Int. J. Mol. Sci. 22(19) (2021).

  • Wang, X. et al. Fenofibrate ameliorated systemic and retinal inflammation and modulated gut microbiota in high-fat diet-induced mice. Front. Cell Infect. Microbiol. 12, 839592 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Unsworth, A. J., Flora, G. D. & Gibbins, J. M. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc. Res. 114(5), 645–655 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakashima, S. Protein kinase C alpha (PKC alpha): regulation and biological function. J. Biochem. 132(5), 669–675 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song, J. C., Rangachari, P. K. & Matthews, J. B. Opposing effects of PKCalpha and PKCepsilon on basolateral membrane dynamics in intestinal epithelia. Am. J. Physiol. Cell Physiol. 283(5), C1548–C1556 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Koya, D. & King, G. L. Protein kinase C activation and the development of diabetic complications. Diabetes 47(6), 859–866 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lee, T. S. et al. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc. Natl. Acad. Sci. USA 86(13), 5141–5145 (1989).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Alt, N. et al. Day-to-day variability of blood glucose concentration curves generated at home in cats with diabetes mellitus. J. Am. Vet. Med. Assoc. 230(7), 1011–1017 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gottlieb, S. & Rand, J. Managing feline diabetes: current perspectives. Vet. Med. (Auckl) 9, 33–42 (2018).

    PubMed 

    Google Scholar