Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells – Scientific Reports

  • Kolios, G. & Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration. 85(1), 3–10 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wisniewski, D., Affer, M., Willshire, J. & Clarkson, B. Further phenotypic characterization of the primitive lineage- CD34+CD38-CD90+CD45RA- hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia. Blood Cancer J. 1(9), e36 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H., Zheng, Z. & Cheng, T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 11(1), 34–44 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Walasek, M. A., van Os, R. & de Haan, G. Hematopoietic stem cell expansion: Challenges and opportunities. Ann. N. Y. Acad. Sci. 1266, 138–150 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, B. et al. Co-expression of Runx1, Hoxa9, Hlf, and Hoxa7 confers multi-lineage potential on hematopoietic progenitors derived from pluripotent stem cells. Front Cell Dev. Biol. 10, 859769 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. et al. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nat. Commun. 5, 5583 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofmeister, C. C., Zhang, J., Knight, K. L., Le, P. & Stiff, P. J. Ex vivo expansion of umbilical cord blood stem cells for transplantation: Growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 39(1), 11–23 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 423(6938), 409–414 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muzzey, D., Evans, E. A. & Lieber, C. Understanding the basics of NGS: From mechanism to variant calling. Curr. Genet. Med. Rep. 3(4), 158–165 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. & Blelloch, R. Cell cycle regulation by microRNAs in stem cells. Results Probl. Cell Differ. 53, 459–472 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lima, J. F., Cerqueira, L., Figueiredo, C., Oliveira, C. & Azevedo, N. F. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 15(3), 338–352 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajami, M., Soleimani, M., Abroun, S. & Atashi, A. Comparison of cord blood CD34 + stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble /membrane isoforms of SCF. J Cell Biochem. 120(9), 15297–15309 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albayrak, E. & Kocabaş, F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. Adv. Protein Chem. Struct. Biol. 135, 425–496 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura-Ishizu, A. Thrombopoietin regulates mitochondria homeostasis for hematopoietic stem cell maintenance. Rinsho Ketsueki. 62(5), 521–527. https://doi.org/10.11406/rinketsu.62.521 (2021) (Japanese).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, P. et al. Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells. Genes Dev. 34(13–14), 950–964 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, T. & Yamazaki, S. Development of low-cost ex vivo hematopoietic stem cell expansion. Rinsho Ketsueki. 63(10), 1422–1429 (2022).

    PubMed 

    Google Scholar
     

  • Gao, L., Decker, M., Chen, H. & Ding, L. Thrombopoietin from hepatocytes promotes hematopoietic stem cell regeneration after myeloablation. Elife. 31(10), e69894. https://doi.org/10.7554/eLife.69894.PMID:34463253;PMCID:PMC8457823 (2021).

    Article 

    Google Scholar
     

  • Li, J. et al. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Acta Pharm Sin B. 12(6), 2808–2831 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura-Ishizu, A. & Suda, T. Multifaceted roles of thrombopoietin in hematopoietic stem cell regulation. Ann. N. Y. Acad. Sci. 1466(1), 51–58. https://doi.org/10.1111/nyas.14169 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nakamura-Ishizu, A. et al. Prolonged maintenance of hematopoietic stem cells that escape from thrombopoietin deprivation. Blood. 137(19), 2609–2620 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papa, L., Djedaini, M. & Hoffman, R. Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Ann. N. Y. Acad. Sci. 1466(1), 39–50 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lynch, J. et al. Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood. 143(16), 1586–1598. https://doi.org/10.1182/blood.2023022082.PMID:38211335;PMCID:PMC11103100 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamaki, T. et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem. Biophys. Res. Commun. 539, 34–41 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schirripa, A., Sexl, V. & Kollmann, K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol. 12, 916682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, A. K., Althoff, M. J. & Cancelas, J. A. Signaling pathways regulating hematopoietic stem cell and progenitor aging. Curr. Stem Cell Rep. 4(2), 166–181 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. & Sugimura, R. Ex vivo expansion of hematopoietic stem cells. Exp. Cell Res. 427(1), 113599 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z., Guo, Q., Song, G. & Hou, Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol. Life Sci. 79(4), 218. https://doi.org/10.1007/s00018-022-04200-w.PMID:35357574;PMCID:PMC11072845 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L., Mack, R., Breslin, P. & Zhang, J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J. Hematol. Oncol. 13(1), 157 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, J. P. et al. StemChecker: A web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res. 43(W1), W72–W77 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51(D1), D587–D592 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi, S. et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood J. Am. Soc. Hematol. 119(12), 2768–2777 (2012).

    CAS 

    Google Scholar
     

  • Sigurjonsson, O. E., Gudmundsson, K. O., Haraldsdóttir, V., Rafnar, T. & Gudmundsson, S. Flt3/Flk-2-ligand in synergy with thrombopoietin delays megakaryocyte development and increases the numbers of megakaryocyte progenitor cells in serum-free cultures initiated with CD34+ cells. J. Hematotherapy Stem Cell Res. 11(2), 389–400 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Aizenman, Y. & de Vellis, J. Brain neurons develop in a serum and glial free environment: Effects of transferrin, insulin-insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation. Brain Res. 406(1–2), 32–42 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav, P., Vats, R., Bano, A. & Bhardwaj, R. Hematopoietic stem cells culture, expansion and differentiation: an insight into variable and available media. Int. J. Stem Cells. 13(3), 326–334 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsiftsoglou, A. S. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): Implications in regenerative medicine. Cells. 10(8), 2140 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogueira-Pedro, A. et al. α-Tocopherol induces hematopoietic stem/progenitor cell expansion and ERK1/2-mediated differentiation. J. Leukocyte Biol. 90(6), 1111–1117 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Q. et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis. 12(7), 706 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, Y., Cui, Y. N. & Wang, H. W. Effects of different concentrations of nicotinamide on hematopoietic stem cells cultured in vitro. World J. Stem Cells. 16(2), 163–175 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented neurobasal™, a new serum-free medium combination. J. Neurosci. Res. 35(5), 567–576 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phuc, P. V. et al. Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank. 13(2), 341–351 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grassinger, J. et al. Differentiation of hematopoietic progenitor cells towards the myeloid and B-lymphoid lineage by hepatocyte growth factor (HGF) and thrombopoietin (TPO) together with early acting cytokines. Eur. J. Haematol. 77(2), 134–144 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rayner, K. J. & Moore, K. J. The plaque “micro” environment: microRNAs control the risk and the development of atherosclerosis. Curr. Atheroscler. Rep. 14(5), 413–421 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, T., Greco, R. & Snowden, J. A. Hematopoietic stem cell transplantation for autoimmune disease. Annu. Rev. Med. 72, 215–228 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X., Tang, B. & Sun, Z. Umbilical cord blood transplantation: Still growing and improving. Stem Cells Transl. Med. 10(Suppl 2), S62-s74 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gudauskaitė, G., Kairienė, I., Ivaškienė, T., Rascon, J. & Mobasheri, A. Therapeutic perspectives for the clinical application of umbilical cord hematopoietic and mesenchymal stem cells: Overcoming complications arising after allogeneic hematopoietic stem cell transplantation. Adv. Exp. Med. Biol. 1409, 111–126 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wilkinson, A. C., Igarashi, K. J. & Nakauchi, H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat. Rev. Genet. 21(9), 541–554 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amiri, F., Kiani, A. A., Bahadori, M. & Roudkenar, M. H. Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: A cost-effective method to maintain self-renewal and homing marker expression. Mol. Biol. Rep. 49(2), 931–941 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shirdare, M., Amiri, F., Samiee, M. P. & Safari, A. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol. Biol. Rep. 51(1), 189 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elahimanesh, M., Shokri, N., Mohammadi, P., Parvaz, N. & Najafi, M. Step by step analysis on gene datasets of growth phases in hematopoietic stem cells. Biochem. Biophys. Rep. 1(39), 101737 (2024).


    Google Scholar
     

  • Diener, C., Keller, A. & Meese, E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 38(6), 613–626 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowicki, M. et al. Alterations in microRNA expression during hematopoietic stem cell mobilization. Biology (Basel). 10(7), 668 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, P., Zhang, W., Xin, H. & Deng, G. Single cell isolation and analysis. Front Cell Dev. Biol. 4, 116 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papa, L. et al. Ex vivo human HSC expansion requires coordination of cellular reprogramming with mitochondrial remodeling and p53 activation. Blood Adv. 2(20), 2766–2779 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, P. et al. Single-cell assessment of transcriptome alterations induced by Scriptaid in early differentiated human haematopoietic progenitors during ex vivo expansion. Sci. Rep. 9(1), 5300 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radtke, S. et al. Purification of human CD34(+)CD90(+) HSCs reduces target cell population and improves lentiviral transduction for gene therapy. Mol. Ther. Methods Clin. Dev. 18, 679–691 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rix, B., Maduro, A. H., Bridge, K. S. & Grey, W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol. 13, 1009160 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fromm, P. D. et al. Distinguishing human peripheral blood CD16(+) myeloid cells based on phenotypic characteristics. J. Leukoc. Biol. 107(2), 323–339 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rheinländer, A., Schraven, B. & Bommhardt, U. CD45 in human physiology and clinical medicine. Immunol. Lett. 196, 22–32 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sanfilippo, C. et al. GNG13 is a potential marker of the state of health of Alzheimer’s disease patients’ cerebellum. J. Mol. Neurosci. 71, 1046–1060 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Identification of new binding partners of the chemosensory signaling protein Gγ13 expressed in taste and olfactory sensory cells. Front. Cell. Neurosci. 6, 26 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, W. et al. Indispensable role of Galectin-3 in promoting quiescence of hematopoietic stem cells. Nat Commun. 12(1), 2118 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. et al. MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis. 32(11), 1641–1647 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tonelli, F. M. P. et al. Stem cells and calcium signaling. In Calcium signaling (ed. Islam, M. S.) 891–916 (Springer, 2012).

    Chapter 

    Google Scholar
     

  • Santos, E. W. et al. Protein restriction impairs the response activation/responsivity of MAPK signaling pathway of hematopoietic stem cells. Nutr. Res. 116, 12–23 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uslu, M., Albayrak, E. & Kocabaş, F. Temporal modulation of calcium sensing in hematopoietic stem cells is crucial for proper stem cell expansion and engraftment. J. Cell Physiol. 235(12), 9644–9666 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furukawa, Y. et al. Expression and state of phosphorylation of the retinoblastoma susceptibility gene product in cycling and noncycling human hematopoietic cells. Proc. Natl. Acad. Sci. U. S. A. 87(7), 2770–2774 (1990).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mushtaq, M., Gaza, H. V. & Kashuba, E. V. Role of the RB-interacting proteins in stem cell biology. Adv. Cancer Res. 131, 133–157 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, W. et al. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell. 125(5), 929–941 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rörby, E., Hägerström, M. N., Blank, U., Karlsson, G. & Karlsson, S. Human hematopoietic stem/progenitor cells overexpressing Smad4 exhibit impaired reconstitution potential in vivo. Blood. 120(22), 4343–4351 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Häger, M. et al. MicroRNA-130a-mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF-β1 stimulation in granulocytic precursors. Blood. 118(25), 6649–6659 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Miranda, M. B. & Johnson, D. E. Signal transduction pathways that contribute to myeloid differentiation. Leukemia. 21(7), 1363–1377 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimberg, A., Karlberg, I., Nilsson, K. & Oberg, F. Ser727/Tyr701-phosphorylated Stat1 is required for the regulation of c-Myc, cyclins, and p27Kip1 associated with ATRA-induced G0/G1 arrest of U-937 cells. Blood. 102(1), 254–261 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fasouli, E. S. & Katsantoni, E. JAK-STAT in early hematopoiesis and leukemia. Front Cell Dev. Biol. 9, 669363 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. The SOX4/miR-17-92/RB1 axis promotes prostate cancer progression. Neoplasia. 21(8), 765–776 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. J., Hsu, C. T., Tsai, S. F. & Chen, C. H. Association between circulating MicroRNAs (miR-21–5p, miR-20a-5p, miR-29b-3p, miR-126–3p and miR-101–3p) and chronic allograft dysfunction in renal transplant recipients. Int. J. Mol. Sci. 23(20), 12253 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, D. et al. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget. 7(29), 45199–45213 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maleki, B. et al. Effect of miR-18a-5p, miR-19a-3p, and miR-20a-5p on in vitro cardiomyocyte differentiation of human endometrium tissue-derived stem cells through regulation of Smad4 expression. Rep. Biochem. Mol. Biol. 12(1), 136–146 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar