Exploring the evolution of bacterial cellulose precursors and their potential use as cellulose-based building blocks – Scientific Reports

  • Urbina, L., Corcuera, M. Á., Gabilondo, N., Eceiza, A. & Retegi, A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose 28, 8229–8253 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williams, W. S. & Cannon, R. E. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl. Environ. Microbiol. 55, 2448–2452 (1989).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman, S. S. A. et al. Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Sci. Rep. 11, 2912 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media.

  • Gregory, D. A. et al. Bacterial cellulose: A smart biomaterial with diverse applications. Mater. Sci. Eng. R Rep. 145, 100623 (2021).

    Article 

    Google Scholar
     

  • El-Gendi, H., Taha, T. H., Ray, J. B. & Saleh, A. K. Recent advances in bacterial cellulose: A low-cost effective production media, optimization strategies and applications. Cellulose 29, 7495–7533 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J. & Han, S. S. Bacterial cellulose and its applications. Polymers (Basel) 14, 1080 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lupașcu, R. E. et al. An overview regarding microbial aspects of production and applications of bacterial cellulose. Materials (Basel) 15, 676 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Portela, R., Leal, C. R., Almeida, P. L. & Sobral, R. G. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol. 12, 586–610 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bacakova, L. et al. Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials (Basel) 9, 164 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swingler, S. et al. Recent advances and applications of bacterial cellulose in biomedicine. Polymers (Basel) 13, 412 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salimi, S., Sotudeh-Gharebagh, R., Zarghami, R., Chan, S. Y. & Yuen, K. H. Production of nanocellulose and its applications in drug delivery: A critical review. ACS Sustain. Chem. Eng. 7, 15800–15827 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Unal, S., Gunduz, O. & Uzun, M. Tissue engineering applications of bacterial cellulose based nanofibers. In Green Nanomaterials (eds Ahmed, S. & Ali, W.) 319–346 (Springer, 2020).

    Chapter 

    Google Scholar
     

  • Moniri, M. et al. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials (Basel) 7, 257 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Castro, C. et al. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr. Polym. 84, 96–102 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Al-Shamary, E. & Esmaeel, A.K.A.-D. Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. Tojsat 3, 194–203 (2013).


    Google Scholar
     

  • Andritsou, V. et al. Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega 3, 10365–10373 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molina-Ramírez, C. et al. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials (Basel) 10, 639 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Feng, X. et al. Production and characterization of bacterial cellulose from kombucha-fermented soy whey. Food Prod. Process. Nutr. 6, 1–14 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fatima, A., Ortiz-Albo, P., Neves, L. A., Nascimento, F. X. & Crespo, J. G. Biosynthesis and characterization of bacterial cellulose membranes presenting relevant characteristics for air/gas filtration. J. Memb. Sci. 674, 121509 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Troncoso, O. P. & Torres, F. G. Bacterial cellulose-graphene based nanocomposites. Int. J. Mol. Sci. 21, 6532 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres, F. G., Arroyo, J. J. & Troncoso, O. P. Bacterial cellulose nanocomposites: An all-nano type of material. Mater. Sci. Eng. C Mater. Biol. Appl. 98, 1277–1293 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarthy, R. R., Ullah, M. W., Booth, P., Pei, E. & Yang, G. The use of bacterial polysaccharides in bioprinting. Biotechnol. Adv. 37, 107448 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai, C. et al. Use of anionic polysaccharides in the development of 3D bioprinting technology. Appl. Sci. (Basel) 9, 2596 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Athukoralalage, S. S., Balu, R., Dutta, N. K. & Roy Choudhury, N. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: A brief review. Polymers (Basel) 11, 898 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markstedt, K. et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16, 1489–1496 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, L. et al. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr. Polym. 221, 146–156 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, M., Öztürk, E., Arlov, Ø., Gatenholm, P. & Zenobi-Wong, M. Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng. 45, 210–223 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Z. et al. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Mater. Sci. Eng. C Mater. Biol. Appl. 129, 112393 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pillai, M. M. et al. Symbiotic culture of nanocellulose pellicle: A potential matrix for 3D bioprinting. Mater. Sci. Eng. C Mater. Biol. Appl. 119, 111552 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coelho, R. M. D., de Almeida, A. L., Amaral, R. Q. G. D., da Mota, R. N. & de Sousa, P. H. M. Kombucha: Review. Int. J. Gastron. Food Sci. 22, 100272 (2020).

    Article 

    Google Scholar
     

  • Kitwetcharoen, H. et al. Kombucha healthy drink—recent advances in production, chemical composition and health benefits. Fermentation 9, 48 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S. & Sathishkumar, M. A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 13, 538–550 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ramírez Tapias, Y. A., Peltzer, M. A., Delgado, J. F. & Salvay, A. G. Kombucha tea by-product as source of novel materials: Formulation and characterization of films. Food Bioproc. Tech. 13, 1166–1180 (2020).

    Article 

    Google Scholar
     

  • Betlej, I., Salerno-Kochan, R., Krajewski, K. J., Zawadzki, J. & Boruszewski, P. The influence of culture medium components on the physical and mechanical properties of cellulose synthesized by kombucha microorganisms. Bioresources 15, 3125–3135 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Villarreal-Soto, S. A. et al. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem. 83, 44–54 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tsilo, P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S. & Pullabhotla, R. V. S. R. Isolation and optimization of culture conditions of a bioflocculant-producing fungi from Kombucha tea SCOBY. Microbiol. Res. (Pavia) 12, 950–966 (2021).

    Article 

    Google Scholar
     

  • Oyewole, O. A. et al. Production and characterization of a bioflocculant produced by microorganisms isolated from earthen pond sludge. Bioresour. Technol. Rep. 22, 101492 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kurniawan, S. B. et al. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health 17, 9312 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammed, J. N. & Wan Dagang, W. R. Z. Implications for industrial application of bioflocculant demand alternatives to conventional media: Waste as a substitute. Water Sci. Technol. 80, 1807–1822 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Giri, S. S., Ryu, E. & Park, S. C. Characterization of the antioxidant and anti-inflammatory properties of a polysaccharide-based bioflocculant from Bacillus subtilis F9. Microb. Pathog. 136, 103642 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thu, T. T. M., Moreira, R. A., Weber, S. A. L. & Poma, A. B. Molecular insight into the self-assembly process of cellulose Iβ microfibril. Int. J. Mol. Sci. 23, 8505 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Park, H.-D. & Chung, S. Microfluidic approaches to bacterial biofilm formation. Molecules 17, 9818–9834 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuboi, M. Infrared spectrum and crystal structure of cellulose. J. Polym. Sci. 25, 159–171 (1957).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J. et al. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea. Biotechnol. Appl. Biochem. 66, 108–118 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amarasekara, A. S., Wang, D. & Grady, T. L. A comparison of kombucha SCOBY bacterial cellulose purification methods. SN Appl. Sci. https://doi.org/10.1007/s42452-020-1982-2 (2020).

    Article 

    Google Scholar
     

  • Peretz, R., Mamane, H., Sterenzon, E. & Gerchman, Y. Rapid quantification of cellulose nanocrystals by Calcofluor White fluorescence staining. Cellulose 26, 971–977 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in ResearchDevelopment and Challenging Perspectives in Applications-AMini Review.

  • Williams, D., Thayer, P., Martinez, H., Gatenholm, E. & Khademhosseini, A. A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting 9, 19–36 (2018).

    Article 

    Google Scholar
     

  • Ben Rebah, F., Mnif, W. & Siddeeg, M. S. Microbial flocculants as an alternative to synthetic polymers for wastewater treatment: A review. Symmetry (Basel) 10, 556 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Olivero, E. et al. Gradient porous structures of mycelium: A quantitative structure-mechanical property analysis. Res. Square https://doi.org/10.21203/rs.3.rs-3186215/v1 (2023).

    Article 

    Google Scholar
     

  • Di Natale, C. et al. Engineered bacterial cellulose nanostructured matrix for incubation and release of drug-loaded oil in water nanoemulsion. Front. Bioeng. Biotechnol. 10, 851893 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, R. M. Jr., Millard, A. C. & Campagnola, P. J. Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Opt. Lett. 28, 2207–2209 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadiarnykh, O., Lacomb, R. B., Campagnola, P. J. & Mohler, W. A. Coherent and incoherent SHG in fibrillar cellulose matrices. Opt. Express 15, 3348–3360 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vielreicher, M. et al. Bacterial nanocellulose stimulates mesenchymal stem cell expansion and formation of stable collagen-I networks as a novel biomaterial in tissue engineering. Sci. Rep. 8, 9401 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, C. & Bhardwaj, N. K. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms. Int. J. Biol. Macromol. 132, 166–177 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bäckdahl, H. et al. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, W., Jia, S., Jia, Y. & Yang, H. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microbiol. Biotechnol. 26, 125–131 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, C., Bhardwaj, N. K. & Pathak, P. Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. J. Clean. Prod. 279, 123608 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hornung, M., Ludwig, M., Gerrard, A. M. & Schmauder, H.-P. Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (part 1). Eng. Life Sci. 6, 537–545 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Vasconcelos, N. F. et al. Oxidized bacterial cellulose membrane as support for enzyme immobilization: Properties and morphological features. Cellulose 27, 3055–3083 (2020).

    Article 
    CAS 

    Google Scholar
     

  • De Gregorio, V. et al. Intestine-on-chip device increases ECM remodeling inducing faster epithelial cell differentiation. Biotechnol. Bioeng. 117, 556–566 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • De Gregorio, V. et al. Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction, stromal reshaping and probiotics translocation under inflammation. Biomaterials 286, 121573 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhong, C. Industrial-scale production and applications of bacterial cellulose. Front. Bioeng. Biotechnol. 8, 605374 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iguchi, M., Yamanaka, S. & Budhiono, A. Bacterial cellulose—A masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, A., Jeong, H.-H., Lee, J., Kim, K. P. & Lee, C.-S. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. Biochip J. 5, 236–241 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chao, Y., Sugano, Y. & Shoda, M. Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl. Microbiol. Biotechnol. 55, 673–679 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombardo, D., Calandra, P., Pasqua, L. & Magazù, S. Self-assembly of organic nanomaterials and biomaterials: The bottom-up approach for functional nanostructures formation and advanced applications. Materials (Basel) 13, 1048 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Caro-Astorga, J., Walker, K. T., Herrera, N., Lee, K.-Y. & Ellis, T. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat. Commun. 12, 5027 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Indurkar, A., Choudhary, R., Rubenis, K. & Locs, J. Advances in sintering techniques for calcium phosphates ceramics. Materials (Basel) 14, 6133 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hotaling, N. A., Bharti, K., Kriel, H. & Simon, C. G. Jr. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials 61, 327–338 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agostini, M., Greco, G. & Cecchini, M. Polydimethylsiloxane (PDMS) irreversible bonding to untreated plastics and metals for microfluidics applications. APL Mater. 7, 081108 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Aran, K., Sasso, L. A., Kamdar, N. & Zahn, J. D. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab. Chip. 10, 548–552 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar