Evaluation of enzymatic protocols to optimize efficiency of bovine adipose tissue-derived mesenchymal stromal cell isolation – npj Science of Food

  • Warner, R. D. Review: analysis of the process and drivers for cellular meat production. Animal 13, 3041–3058 (2019).

  • Post, M. J. Cultured meat from stem cells: Challenges and prospects. Meat Sci. 92, 297–301 (2012).

  • Olenic, M. & Thorrez, L. Cultured meat production: what we know, what we don’t know and what we should know. Ital. J. Anim. Sci. 22, 749–753 (2023).

  • Thorrez, L. & Vandenburgh, H. Challenges in the quest for ‘clean meat.’. Nat. Biotechnol. 37, 215–216 (2019).

  • Kadim, I. T., Mahgoub, O., Baqir, S., Faye, B. & Purchas, R. Cultured meat from muscle stem cells: A review of challenges and prospects. J. Integr. Agric. 14, 222–233 (2015).

  • Choi, K. H. et al. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr. Rev. Food Sci. Food Saf. 20, 429–457 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ding S. et al. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 8 https://doi.org/10.1038/s41598-018-28746-7 (2018).

  • Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci. USA 115, 2090–2095 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Arye, T. & Levenberg, S. Tissue engineering for clean meat production. Front Sustain Food Syst. 3, 46 (2019).

    Article 

    Google Scholar
     

  • Stephens, N. et al. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78, 155–166 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanga, M. P. et al. Bioprocess development for scalable production of cultivated meat. Biotechnol. Bioeng. 117, 3029–3039 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naraoka, Y. et al. Isolation and characterization of tissue resident CD29-positive progenitor cells in livestock to generate a three-dimensional meat bud. Cells 10, 2499 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zagury, Y. et al. Engineered marble-like bovine fat tissue for cultured meat. Commun. Biol. 5, 927 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nawaz, S. et al. Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Ann. Anat. 228, (2020). https://doi.org/10.1016/j.aanat.2019.151452 (2020).

  • Kim, G. Y. et al. Comparative analysis of porcine adipose- and Wharton’s jelly-derived mesenchymal stem cells. Animals 13, 2947 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olenic, M. et al. Livestock cell types with myogenic differentiation potential: considerations for the development of cultured meat. Animal https://doi.org/10.1016/j.animal.2024.101242 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fei, W. et al. Synergistic effect of hydrogen and 5-Aza on myogenic differentiation through the p38 MAPK signaling pathway in adipose-derived mesenchymal stem cells. Int. J. Stem Cells 16, 78–92 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helms, F. et al. Complete myogenic differentiation of adipogenic stem cells requires both biochemical and mechanical stimulation. Ann. Biomed. Eng. 48, 913–926 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gugjoo, M. B., Amarpal, Fazili, M. R., Shah, R. A. & Sharma, G. T. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J. Cell. Physiol. 234, 8618–8635 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bajek, A. et al. Does the harvesting technique affect the properties of adipose-derived stem cells? The comparative biological characterization. J. Cell. Biochem. 118, 1097–1107 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salehinejad, P. et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. Vitr. Cell. Dev. Biol. Anim. 48, 75–83 (2012).

    Article 

    Google Scholar
     

  • Gittel, C. et al. Isolation of equine multipotent mesenchymal stromal cells by enzymatic tissue digestion or explant technique: Comparison of cellular properties. BMC Vet. Res. 9, 221 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hornick, J. E., Duncan, F. E., Shea, L. D. & Woodruff, T. K. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction 145, 19–32 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, V. et al. Comparison of the enzymatic efficiency of Liberase TM and tumor dissociation enzyme: Effect on the viability of cells digested from fresh and cryopreserved human ovarian cortex. Reprod. Biol. Endocrinol. 16, 57 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aronowitz, J. A., Lockhart, R. A. & Hakakian, C. S. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. SpringerPlus 23, 713 (2015).

    Article 

    Google Scholar
     

  • Grzesiak, J., Krzysztof, M., Karol, W. & Joanna, C. Isolation and morphological characterization of ovine adipose-derived mesenchymal stem cells in culture. Int. J. Stem Cells 4, 99–104 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. et al. Isolation and characterization of adipose-derived mesenchymal stem cells (ADSCs) from cattle. Appl. Biochem. Biotechnol. 174, 719–728 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viswanathan, S. et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 21, 1019–1024 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heyman, E. et al. Validation of multiparametric panels for bovine mesenchymal stromal cell phenotyping. Cytometry 2023, 1–12 (2023).


    Google Scholar
     

  • De Schauwer, C. et al. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry 81A, 312–323 (2012).

    Article 

    Google Scholar
     

  • Suga, H. et al. Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells Dev. 18, 1201–1210 (2019).

    Article 

    Google Scholar
     

  • Mishra, S. et al. Umbilical cord tissue is a robust source for mesenchymal stem cells with enhanced myogenic differentiation potential compared to cord blood. Sci. Rep. 10, 18978 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, V. M. et al. Comparison of the enzymatic efficiency of Liberase TM and tumor dissociation enzyme: Effect on the viability of cells digested from fresh and cryopreserved human ovarian cortex. Reprod. Biol. Endocrinol. 16, 1–14 (2018).

    Article 

    Google Scholar
     

  • Sheng, H. et al. Weighted gene co-expression network analysis identifies key modules and central genes associated with bovine subcutaneous adipose tissue. Front. Vet. Sci. 9, 1–12 (2022).

    Article 

    Google Scholar
     

  • Nakajima, I., Yamaguchi, T., Ozutsumi, K. & Aso, H. Adipose tissue extracellular matrix: Newly organized by adipocytes during differentiation. Differentiation 63, 193–200 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bukowska, J. et al. Adipose-derived stromal/stem cells from large animal models: From basic to applied science. Stem Cell Rev. 17, 719–738 (2021).

    Article 

    Google Scholar
     

  • Liu, S. Enzymes (ed. Liu, S.) 297-373.

  • Burja, B. et al. An optimized tissue dissociation protocol for single-cell RNA sequencing analysis of fresh and cultured human skin biopsies. Front. Cell. Dev. Biol. 10, 1–17 (2022).

    Article 

    Google Scholar
     

  • Skog, M. et al. The effect of enzymatic digestion on cultured epithelial autografts. Cell Transplant. 28, 638–644 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seaman, S. A., Tannan, S. T., Cao, Y., Peirce, S. M. & Lin, K. Y. Differential effects of processing time and duration of collagenase digestion on human and murine fat grafts. Plast. Reconstr. Surg. 136, 1–11 (2015).

    Article 

    Google Scholar
     

  • Lara, E. et al. Endometritis and in vitro PGE2 challenge modify properties of cattle endometrial mesenchymal stem cells and their transcriptomic profile. Stem Cells Int. 2017, 1–16 (2017).

    Article 

    Google Scholar
     

  • Campos, L. L. et al. Isolation, culture, characterization and cryopreservation of stem cells derived from amniotic mesenchymal layer and umbilical cord tissue of bovine fetuses. Pesq. Vet. Bras. 37, 278–286 (2017).

    Article 

    Google Scholar
     

  • Yang, J. et al. Isolation and biological characterization of tendon-derived stem cells from fetal bovine. Vitr. Cell. Dev. Biol. 52, 846–856 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Senescence in mesenchymal stem cells: functional alterations, molecular mechanisms, and rejuvenation strategies. Front. Cell. Dev. Biol. 8, 1–17 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kassar-Duchossoy, L. et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev. 19, 1426–1431 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamura, L. H. et al. Myogenic differentiation potential of mesenchymal stem cells derived from fetal bovine bone marrow. Anim. Biol. 29, 1–11 (2018).

    CAS 

    Google Scholar
     

  • Ramírez-Espinosa, J. J. et al. Bovine (Bos taurus) bone marrow mesenchymal cell differentiation to adipogenic and myogenic lineages. Cells Tissues Organs 16, 51–64 (2015).


    Google Scholar
     

  • De Schauwer, C. et al. Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources. Stem Cell Res. Ther. 5, 1–13 (2014).

  • De Schauwer, C. et al. Optimization of the isolation, culture, and characterization of equine umbilical cord blood mesenchymal stromal cells. Tissue Eng. Part C. 17, 220 (2011).

    Article 

    Google Scholar
     

  • Heyman, E. et al. Validation of a color deconvolution method to quantify MSC tri-lineage differentiation across species. Front. Vet. Sci. 9, 1–15 (2022).

    Article 

    Google Scholar
     

  • Bustin, S. et al. A-Z of Quantitative PCR. IUL Biotechnology Series (2004), International University Line, La Jolla, California.

  • Van Poucke, M., Peelman, L. J. Flexible, multi-use, PCR-based nucleic acid integrity assays based on the ubiquitin C gene. BioRxiv 168195 https://doi.org/10.1101/168195 (2017).

  • Andersen Lindbjerg, C. et al. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).

    Article 

    Google Scholar
     

  • Sampaio, R. V. et al. Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genet. Mol. Res. 14, 53–62 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hepsibha, P. et al. Multipotent differentiation potential of buffalo adipose tissue-derived mesenchymal stem cells. Asian J. Anim. Vet. Adv. 6, 772–788 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ayala-Cuellar, A. P. et al. Characterization of canine adipose tissue-derived mesenchymal stem cells immortalized by SV40-T retrovirus for therapeutic use. J. Cell. Physiol. 234, 16630–16642 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez, R. et al. Canine adipose-derived mesenchymal stromal cells enhance neuro regeneration in a rat model of sciatic nerve crush injury. Cell Transplant. 28, 47–54 (2019).

    Article 

    Google Scholar
     

  • Murakami, M. et al. Trophic effects and regenerative potential of mobilized mesenchymal stem cells from bone marrow and adipose tissue as alternative cell sources for pulp/dentin regeneration. Cell Transplant. 24, 1753–1765 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bearden, R. N. et al. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res. Ther. 8, 218 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, A. et al. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLOS ONE 13, 1–20 (2018).

    Article 

    Google Scholar
     

  • Mellado-López, M. et al. Plasma rich in growth factors induces cell proliferation, migration, differentiation, and cell survival of adipose-derived stem cells. Stem Cells Int. 2017, 1–11 (2017).

    Article 

    Google Scholar
     

  • Russell, K. A., Gibson, T. W. G., Chong, A., Co, C. & Koch, T. G. Canine platelet lysate is inferior to fetal bovine serum for the isolation and propagation of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLOS ONE 10, 1–14 (2015).

    Article 

    Google Scholar
     

  • Neupane, M., Chang, C. C., Kiupel, M. & Yuzbasiyan-Gurkan, V. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng. Part A 14, 1007–1015 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guercio, A. et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell. Biol. Int. 36, 189–194 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devireddy, L. R., Myers, M., Screven, R., Liu, Z. & Boxer, L. A serum-free medium formulation efficiently supports isolation and propagation of canine adipose-derived mesenchymal stem/ stromal cells. PLOS ONE 14, 1–21 (2019).

    Article 

    Google Scholar
     

  • Ahn, J. et al. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma. PLOS ONE 8, 1–11 (2013).

    Article 

    Google Scholar
     

  • Frisbie, D. D., Kisiday, J. D., Kawcak, C. E., Werpy, N. M. & McIlwraith, C. W. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J. Orthop. Res. 27, 1675–1680 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • de Oliveira, S. et al. Triiodothyronine has no enhancement effect on the osteogenic or chondrogenic differentiation of equine adipose tissue stem cells. J. Equine Vet. 86, 1–7 (2020).


    Google Scholar
     

  • Raabe, O. et al. Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochem. Cell. Biol. 134, 545–554 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamič, N. et al. Effect of intrabronchial administration of autologous adipose-derived mesenchymal stem cells on severe equine asthma. Stem Cell Res. Ther. 13, 23 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, L. E. et al. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res. Ther. 16, 1–13 (2014).

    Article 

    Google Scholar
     

  • Alstrup, T., Eijken, M., Bohn, A. B., MØller, B., & Damsgaard, T. E. Isolation of adipose tissue-derived stem cells: enzymatic digestion in combination with mechanical distortion to increase adipose tissue-derived stem cell yield from human aspirated fat. Curr. Protoc. Stem Cell Biol. 48 https://doi.org/10.1002/cpsc.68 (2019).

  • Cao, Y. et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem. Biophys. Res. Commun. 332, 370–379 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vahedi, P. et al. Advantages of sheep infrapatellar fat pad adipose tissue derived stem cells in tissue engineering. Adv. Pharm. Bull. 6, 105–110 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godoy, R. F., Alves, A. L. G., Gibson, A. J., Lima, E. M. M. & Goodship, A. E. Do progenitor cells from different tissue have the same phenotype? Res. Vet. Sci. 96, 454–459 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heidari, B. et al. Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone marrow, liver, and adipose tissue. Avicenna J. Med. Biotechnol. 5, 104–117 (2013).

    PubMed 
    PubMed Central 

    Google Scholar