Kleefstra, T. et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 79, 370–377. https://doi.org/10.1086/505693 (2006).
Stewart, D. R. et al. Subtelomeric deletions of chromosome 9q: A novel microdeletion syndrome. Am. J. Med. Genet. A 128A, 340–351. https://doi.org/10.1002/ajmg.a.30136 (2004).
Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815–826. https://doi.org/10.1101/gad.1284005 (2005).
Shinkai, Y. & Tachibana, M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25, 781–788. https://doi.org/10.1101/gad.2027411 (2011).
Yoshida, K., Muller, D. J. & Desarkar, P. Psychiatric manifestations of Kleefstra syndrome: A case report. Front. Psychiatry 14, 1174195. https://doi.org/10.3389/fpsyt.2023.1174195 (2023).
Hadzsiev, K. et al. Kleefstra syndrome in Hungarian patients: Additional symptoms besides the classic phenotype. Mol. Cytogenet. 9, 22. https://doi.org/10.1186/s13039-016-0231-2 (2016).
Mitra, A. K., Dodge, J., Van Ness, J., Sokeye, I. & Van Ness, B. A de novo splice site mutation in EHMT1 resulting in Kleefstra syndrome with pharmacogenomics screening and behavior therapy for regressive behaviors. Mol. Genet. Genomic Med. 5, 130–140. https://doi.org/10.1002/mgg3.265 (2017).
Kramer, J. M. et al. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol. 9, e1000569. https://doi.org/10.1371/journal.pbio.1000569 (2011).
Balemans, M. C. et al. Reduced exploration, increased anxiety, and altered social behavior: Autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav. Brain Res. 208, 47–55. https://doi.org/10.1016/j.bbr.2009.11.008 (2010).
Balemans, M. C. et al. Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome. Hum. Mol. Genet. 22, 852–866. https://doi.org/10.1093/hmg/dds490 (2013).
Yamada, A. et al. Derepression of inflammation-related genes link to microglia activation and neural maturation defect in a mouse model of Kleefstra syndrome. iScience 24, 102741. https://doi.org/10.1016/j.isci.2021.102741 (2021).
Iglesias-Ortega, L., Megias-Fernandez, C., Dominguez-Gimenez, P., Jimeno-Gonzalez, S. & Rivero, S. Cell consequences of loss of function of the epigenetic factor EHMT1. Cell. Signal. 108, 110734. https://doi.org/10.1016/j.cellsig.2023.110734 (2023).
Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov. 16, 115–130. https://doi.org/10.1038/nrd.2016.245 (2017).
Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846. https://doi.org/10.1038/nprot.2012.116 (2012).
Frega, M. et al. Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat. Commun. 10, 4928. https://doi.org/10.1038/s41467-019-12947-3 (2019).
Cacciamali, A., Villa, R. & Dotti, S. 3D cell cultures: Evolution of an ancient tool for new applications. Front. Physiol. 13, 836480. https://doi.org/10.3389/fphys.2022.836480 (2022).
Breslin, S. & O’Driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today 18, 240–249. https://doi.org/10.1016/j.drudis.2012.10.003 (2013).
Kofman, S. et al. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J. Tissue Eng. 13, 20417314221113391. https://doi.org/10.1177/20417314221113391 (2022).
Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678. https://doi.org/10.1038/nmeth.3415 (2015).
Hogberg, H. T. & Smirnova, L. The future of 3D brain cultures in Developmental Neurotoxicity Testing. Front. Toxicol. 4, 808620. https://doi.org/10.3389/ftox.2022.808620 (2022).
Arlotta, P. Organoids required! A new path to understanding human brain development and disease. Nat. Methods 15, 27–29. https://doi.org/10.1038/nmeth.4557 (2018).
Kobolak, J. et al. Human Induced Pluripotent Stem cell-derived 3D-Neurospheres are suitable for neurotoxicity screening. Cells 9https://doi.org/10.3390/cells9051122 (2020).
Varga, E. et al. Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Res. 17, 531–533. https://doi.org/10.1016/j.scr.2016.09.031 (2016).
Nagy, J. et al. Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism. Transl. Psychiatry 7, e1179. https://doi.org/10.1038/tp.2017.144 (2017).
Lee, J. et al. EHMT1 knockdown induces apoptosis and cell cycle arrest in lung cancer cells by increasing CDKN1A expression. Mol. Oncol. 15, 2989–3002. https://doi.org/10.1002/1878-0261.13050 (2021).
Iwasaki, K., Isaacs, K. R. & Jacobowitz, D. M. Brain-derived neurotrophic factor stimulates neurite outgrowth in a calretinin-enriched neuronal culture system. Int. J. Dev. Neurosci. 16, 135–145. https://doi.org/10.1016/s0736-5748(98)00011-2 (1998).
Coley, A. A. & Gao, W. J. PSD95: A synaptic protein implicated in schizophrenia or autism? Prog. Neuropsychopharmacol. Biol. Psychiatry 82, 187–194. https://doi.org/10.1016/j.pnpbp.2017.11.016 (2018).
Kwon, S. E. & Chapman, E. R. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70, 847–854. https://doi.org/10.1016/j.neuron.2011.04.001 (2011).
Tanner, C. M. et al. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 119, 866–872. https://doi.org/10.1289/ehp.1002839 (2011).
Day, B. J., Patel, M., Calavetta, L., Chang, L. Y. & Stamler, J. S. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. U S A. 96, 12760–12765. https://doi.org/10.1073/pnas.96.22.12760 (1999).
Pamies, D. et al. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol. Appl. Pharmacol. 354, 101–114. https://doi.org/10.1016/j.taap.2018.02.003 (2018).
Reisman, S. A. et al. Bardoxolone methyl decreases megalin and activates nrf2 in the kidney. J. Am. Soc. Nephrol. 23, 1663–1673. https://doi.org/10.1681/ASN.2012050457 (2012).
Moruno-Manchon, J. F. et al. Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol. Cell. Neurosci. 86, 65–71. https://doi.org/10.1016/j.mcn.2017.11.014 (2018).
Agudelo, D., Bourassa, P., Berube, G. & Tajmir-Riahi, H. A. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: Structural features and biological implications. Int. J. Biol. Macromol. 66, 144–150. https://doi.org/10.1016/j.ijbiomac.2014.02.028 (2014).
Naspolini, N. F., Rieg, H., Cenci, C. E., Cattani, V. H., Zamoner, A. & D. & Paraquat induces redox imbalance and disrupts glutamate and energy metabolism in the hippocampus of prepubertal rats. Neurotoxicology 85, 121–132. https://doi.org/10.1016/j.neuro.2021.05.010 (2021).
Strong, C. E. et al. Functional brain region-specific neural spheroids for modeling neurological diseases and therapeutics screening. Commun. Biol. 6, 1211. https://doi.org/10.1038/s42003-023-05582-8 (2023).
Fear, V. S. et al. CRISPR single base editing, neuronal disease modelling and functional genomics for genetic variant analysis: Pipeline validation using Kleefstra syndrome EHMT1 haploinsufficiency. Stem Cell Res. Ther. 13, 69. https://doi.org/10.1186/s13287-022-02740-3 (2022).
Fear, V. S. et al. Functional validation of variants of unknown significance using CRISPR gene editing and transcriptomics: A Kleefstra syndrome case study. Gene 821, 146287. https://doi.org/10.1016/j.gene.2022.146287 (2022).
Kim, N. G., Koh, E., Chen, X. & Gumbiner, B. M. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. U S A 108, 11930–11935. https://doi.org/10.1073/pnas.1103345108 (2011).
Yang, Y. et al. Euchromatic histone lysine methyltransferase 1 regulates cancer development in human gastric cancer by regulating E-cadherin. Oncol. Lett. 15, 9480–9486. https://doi.org/10.3892/ol.2018.8506 (2018).
Souza, B. K. et al. Histone methyltransferases G9a/Ehmt2 and GLP/Ehmt1 are Associated with cell viability and poorer prognosis in Neuroblastoma and Ewing Sarcoma. Int. J. Mol. Sci. 24https://doi.org/10.3390/ijms242015242 (2023).
Bouman, A. et al. Growth, body composition, and endocrine-metabolic profiles of individuals with Kleefstra syndrome provide directions for clinical management and translational studies. Am. J. Med. Genet. Ahttps://doi.org/10.1002/ajmg.a.63472 (2023).
Benevento, M. et al. Histone methylation by the Kleefstra syndrome protein EHMT1 mediates homeostatic synaptic scaling. Neuron 91, 341–355. https://doi.org/10.1016/j.neuron.2016.06.003 (2016).
Alsaqati, M. et al. NRSF/REST lies at the intersection between epigenetic regulation, miRNA-mediated gene control and neurodevelopmental pathways associated with intellectual disability (ID) and Schizophrenia. Transl. Psychiatry 12, 438. https://doi.org/10.1038/s41398-022-02199-z (2022).
Chen, E. S. et al. Molecular convergence of neurodevelopmental disorders. Am. J. Hum. Genet. 95, 490–508. https://doi.org/10.1016/j.ajhg.2014.09.013 (2014).
Ciceri, G. et al. An epigenetic barrier sets the timing of human neuronal maturation. Nature 626, 881–890. https://doi.org/10.1038/s41586-023-06984-8 (2024).
Shimojo, M. & Hersh, L. B. Regulation of the cholinergic gene locus by the repressor element-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF). Life Sci. 74, 2213–2225. https://doi.org/10.1016/j.lfs.2003.08.045 (2004).
Daniels, R. W., Miller, B. R. & DiAntonio, A. Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration. Neurobiol. Dis. 41, 415–420. https://doi.org/10.1016/j.nbd.2010.10.009 (2011).
Balu, D. T. The NMDA receptor and Schizophrenia: From pathophysiology to treatment. Adv. Pharmacol. 76, 351–382. https://doi.org/10.1016/bs.apha.2016.01.006 (2016).
Lesch, K. P. & Mossner, R. Genetically driven variation in serotonin uptake: Is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol. Psychiatry 44, 179–192. https://doi.org/10.1016/s0006-3223(98)00121-8 (1998).
Riahi, H. et al. The histone methyltransferase G9a regulates tolerance to oxidative stress-induced energy consumption. PLoS Biol. 17, e2006146. https://doi.org/10.1371/journal.pbio.2006146 (2019).
Ea, C. K., Hao, S., Yeo, K. S. & Baltimore, D. EHMT1 protein binds to nuclear factor-kappab p50 and represses gene expression. J. Biol. Chem. 287, 31207–31217. https://doi.org/10.1074/jbc.M112.365601 (2012).
Wefel, J. S., Kesler, S. R., Noll, K. R. & Schagen, S. B. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA Cancer J. Clin. 65, 123–138. https://doi.org/10.3322/caac.21258 (2015).
Wilkens, R. et al. Diverse maturity-dependent and complementary anti-apoptotic brakes safeguard human iPSC-derived neurons from cell death. Cell. Death Dis. 13, 887. https://doi.org/10.1038/s41419-022-05340-4 (2022).
Li, C. T., Su, T. P., Wang, S. J., Tu, P. C. & Hsieh, J. C. Prefrontal glucose metabolism in medication-resistant major depression. Br. J. Psychiatry 206, 316–323. https://doi.org/10.1192/bjp.bp.113.140434 (2015).
Yao, S. et al. Astrocytic lactate dehydrogenase a regulates neuronal excitability and depressive-like behaviors through lactate homeostasis in mice. Nat. Commun. 14, 729. https://doi.org/10.1038/s41467-023-36209-5 (2023).
Zhang, Y., Lin, S., Chen, Y., Yang, F. & Liu, S. LDH-Apromotes epithelial-mesenchymal transition by upregulating ZEB2 in intestinal-type gastric cancer. Onco Targets Ther. 11, 2363–2373. https://doi.org/10.2147/OTT.S163570 (2018).
Kim, W. D., Kim, Y. W., Cho, I. J., Lee, C. H. & Kim, S. G. E-cadherin inhibits nuclear accumulation of Nrf2: Implications for chemoresistance of cancer cells. J. Cell. Sci. 125, 1284–1295. https://doi.org/10.1242/jcs.095422 (2012).
Aref-Eshghi, E. et al. The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics 12, 923–933. https://doi.org/10.1080/15592294.2017.1381807 (2017).
Yang, W. et al. In StemBook (2008).
Tieng, V. et al. Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev. 23, 1535–1547. https://doi.org/10.1089/scd.2013.0442 (2014).
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-72791-4