Search
Close this search box.

Enhancing prime editing in hematopoietic stem and progenitor cells by modulating nucleotide metabolism – Nature Biotechnology

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayinde, D., Casartelli, N. & Schwartz, O. Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat. Rev. Microbiol. 10, 675–680 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballana, E. & Esté, J. A. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol. 23, 680–692 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mauney, C. H. & Hollis, T. SAMHD1: recurring roles in cell cycle, viral restriction, cancer, and innate immunity. Autoimmunity 51, 96–110 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat. Med. 18, 1682–1687 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D. et al. Vpx mediated degradation of SAMHD1 has only a very limited effect on lentiviral transduction rate in ex vivo cultured HSPCs. Stem Cell Res. 15, 271–280 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levesque, S. et al. Marker-free co-selection for successive rounds of prime editing in human cells. Nat. Commun. 13, 5909 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikdar, M. et al. The equilibrative nucleoside transporter ENT1 is critical for nucleotide homeostasis and optimal erythropoiesis. Blood 137, 3548–3562 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everette, K. A. et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat. Biomed. Eng. 7, 616–628 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, J. et al. Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells. Preprint at bioRxiv https://doi.org/10.1101/2023.05.27.542323 (2023).

  • Fiumara, M. et al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01915-4 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ferreira da Silva, J. et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun. 13, 760 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nambiar, T. S., Baudrier, L., Billon, P. & Ciccia, A. CRISPR-based genome editing through the lens of DNA repair. Mol. Cell 82, 348–388 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skasko, M. et al. Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases. J. Biol. Chem. 280, 12190–12200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, P. L., Nurpeisov, V. & Schinazi, R. F. Retrovirus reverse transcriptases containing a modified YXDD motif. Antivir. Chem. Chemother. 16, 169–182 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palikša, S., Alzbutas, G. & Skirgaila, R. Decreased Km to dNTPs is an essential M-MuLV reverse transcriptase adoption required to perform efficient cDNA synthesis in one-step RT-PCR assay. Protein Eng. Des. Sel. 31, 79–89 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ponnienselvan, K. et al. Addressing the dNTP bottleneck restricting prime editing activity. Preprint at bioRxiv https://doi.org/10.1101/2023.10.21.563443 (2023).

  • Li, X. et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 13, 1669 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, S. S., Lahue, R. S., Au, K. G. & Modrich, P. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263, 6829–6835 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, D. C., Roberts, J. D. & Kunkel, T. A. Heteroduplex repair in extracts of human HeLa cells. J. Biol. Chem. 266, 3744–3751 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahue, R., Au, K. & Modrich, P. DNA mismatch correction in a defined system. Science 245, 160–164 (1998).

    Article 

    Google Scholar
     

  • Mathews, C. K. Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat. Rev. Cancer 15, 528–539 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mjelle, R. et al. Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair. 30, 53–67 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Longley, M. J., Pierce, A. J. & Modrich, P. D. N. A polymerase δ is required for human mismatch repair in vitro. J. Biol. Chem. 272, 10917–10921 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Domínguez-González, C. et al. Deoxynucleoside therapy for thymidine kinase 2–deficient myopathy. Ann. Neurol. 86, 293–303 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amtmann, D., Gammaitoni, A. R., Galer, B. S., Salem, R. & Jensen, M. P. The impact of TK2 deficiency syndrome and its treatment by nucleoside therapy on quality of life. Mitochondrion 68, 1–9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 141, 2085–2099 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02078-y (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, B. et al. An efficient lentiviral CRISPRi approach to silence genes in primary human monocytes. Preprint at bioRxiv https://doi.org/10.1101/2020.12.23.424242 (2020).

  • Casirati, G. et al. Epitope editing enables targeted immunotherapies for acute myeloid leukemia. Nature 621, 404–414 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkman, E. K. et al. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. 46, e58 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L., Liu, Y. & Han, R. BEAT: a Python program to quantify base editing from Sanger sequencing. Cris. J. 2, 223–229 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776–783 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloh, K. et al. Deconvolution of complex DNA repair (DECODR): establishing a novel deconvolution algorithm for comprehensive analysis of CRISPR-edited Sanger sequencing data. Cris. J. 4, 120–131 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Conant, D. et al. Inference of CRISPR edits from Sanger trace data. Cris. J. 5, 123–130 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 215–226 (2019).

    Article 

    Google Scholar