Search
Close this search box.

Enhancing osteoporosis treatment with engineered mesenchymal stem cell-derived extracellular vesicles: mechanisms and advances – Cell Death & Disease

  • Odén A, McCloskey EV, Kanis JA, Harvey NC, Johansson H. Burden of high fracture probability worldwide: secular increases 2010-2040. Osteoporos Int. 2015;26:2243–8.

    Article 
    PubMed 

    Google Scholar
     

  • Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22:465–75.

    Article 

    Google Scholar
     

  • Johnston CB, Dagar M. Osteoporosis in Older Adults. Med Clin North Am. 2020;104:873–84.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Zhu X, Wei A, Chen F, Gao Q, Lu K, et al. Nrf2 epigenetic derepression induced by running exercise protects against osteoporosis. Bone Res. 2021;9:15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Yu Z, Yu M, Qu X. Alcohol consumption and hip fracture risk. Osteoporos Int. 2015;26:531–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noh JY, Yang Y, Jung H. Molecular Mechanisms and Emerging Therapeutics for Osteoporosis. Int J Mol Sci. 2020;21:7623.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A. Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells. Int J Mol Sci. 2020;21:349.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci. 2021;22:3553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregson CL, Compston JE. New national osteoporosis guidance-implications for geriatricians. Age ageing. 2022;51:afac044.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorentzon M. Treating osteoporosis to prevent fractures: current concepts and future developments. J Intern Med. 2019;285:381–94.

    Article 
    PubMed 

    Google Scholar
     

  • Ayers C, Kansagara D, Lazur B, Fu R, Kwon A, Harrod C. Effectiveness and Safety of Treatments to Prevent Fractures in People With Low Bone Mass or Primary Osteoporosis : A Living Systematic Review and Network Meta-analysis for the American College of Physicians. Ann Intern Med. 2023;176:182–95.

    Article 
    PubMed 

    Google Scholar
     

  • Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell. 2018;22:824–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Z, Luo F, Lin Y, Luo J, Ke D, Song C, et al. Research trends of mesenchymal stem cells application in orthopedics: A bibliometric analysis of the past 2 decades. Front Public Health. 2022;10:1021818.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell. 2021;28:1708–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med. 2011;17:1594–601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials. 2011;32:3189–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manieri NA, Mack MR, Himmelrich MD, Worthley DL, Hanson EM, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Investig. 2015;125:3606–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, et al. Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells. 2018;36:602–15.

    Article 
    PubMed 

    Google Scholar
     

  • Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125.

    Article 
    PubMed 

    Google Scholar
     

  • Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, et al. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Res. 2011;108:1340–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Pan Y, Liu Y, Li X, Tang L, Duan M, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem cell Res Ther. 2021;12:434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9:63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Ma L, Li Y, Peng J, Wu D, Zhao X, Cui Y, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 2015;25:24–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164:1226–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quesenberry PJ, Goldberg LR, Aliotta JM, Dooner MS, Pereira MG, Wen S, et al. Cellular phenotype and extracellular vesicles: basic and clinical considerations. Stem Cells Dev. 2014;23:1429–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taipaleenmäki H. Regulation of Bone Metabolism by microRNAs. Curr Osteoporos Rep. 2018;16:1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao AG, Shah K, Cromer B, Sumer H. Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential. Stem Cells Int. 2020;2020:8825771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boulestreau J, Maumus M, Jorgensen C, Noël D. Extracellular vesicles from mesenchymal stromal cells: Therapeutic perspectives for targeting senescence in osteoarthritis. Adv Drug Deliv Rev. 2021;175:113836.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitts CA, Ji N, Li Y, Tan C. Exploiting Exosomes in Cancer Liquid Biopsies and Drug Delivery. Adv Healthc Mater. 2019;8:e1801268.

    Article 
    PubMed 

    Google Scholar
     

  • Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, et al. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents. Int J Mol Sci. 2017;18:1450.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Omar O, Vazirisani F, Thomsen P, Ekström K. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PloS One. 2018;13:e0193059.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez JP, Montecinos L, Ríos S, Reyes P, Martínez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem. 2000;79:557–65.

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1097-4644(20001215)79:43.0.CO;2-H” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-4644%2820001215%2979%3A4%3C557%3A%3AAID-JCB40%3E3.0.CO%3B2-H” aria-label=”Article reference 35″ data-doi=”10.1002/1097-4644(20001215)79:43.0.CO;2-H”>Article 
    PubMed 

    Google Scholar
     

  • Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharm. 2004;4:290–4.

    Article 
    CAS 

    Google Scholar
     

  • Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98:251–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalle Carbonare L, Valenti MT, Zanatta M, Donatelli L, Lo Cascio V. Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum. 2009;60:3356–65.

    Article 
    PubMed 

    Google Scholar
     

  • Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010;28:357–64.

    Article 
    PubMed 

    Google Scholar
     

  • Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA. 2011;108:6139–44.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, et al. Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28:559–73.

    Article 
    CAS 

    Google Scholar
     

  • Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23:1128–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Xu R, Chen CY, Rao SS, Xia K, Huang J, et al. Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metab Clin Exp. 2019;95:93–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yao J, Cai L, Liu T, Wang X, Zhang Y, et al. Bone-Targeted Extracellular Vesicles from Mesenchymal Stem Cells for Osteoporosis Therapy. Int J Nanomed. 2020;15:7967–77.

    Article 
    CAS 

    Google Scholar
     

  • Lu CH, Chen YA, Ke CC, Chiu SJ, Jeng FS, Chen CC, et al. Multiplexed Molecular Imaging Strategy Integrated with RNA Sequencing in the Assessment of the Therapeutic Effect of Wharton’s Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoporosis. Int J Nanomed. 2021;16:7813–30.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Zhou X, Wang D. Mesenchymal Stem Cell-Derived Extracellular Vesicles Inhibit Osteoporosis via MicroRNA-27a-Induced Inhibition of DKK2-Mediated Wnt/β-Catenin Pathway. Inflammation. 2022;45:780–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao F, Gao Y, Chu Q, Wu Q, Zhao L, Lan T, et al. Proteomics comparison of exosomes from serum and plasma between ultracentrifugation and polymer-based precipitation kit methods. Electrophoresis. 2019;40:3092–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu Z, Pang RTK, Liu W, Li Q, Cheng R, Yeung WSB. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PloS One. 2017;12:e0186534.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv. 2022;54:107814.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang G, Wang Y, Zhou W, Lei Y, Lu J, Yin W, et al. A Magnetically Driven Tandem Chip Enables Rapid Isolation and Multiplexed Profiling of Extracellular Vesicles. Angew Chem. 2023;62:e202315113.

    Article 
    CAS 

    Google Scholar
     

  • Morrell AE, Brown GN, Robinson ST, Sattler RL, Baik AD, Zhen G, et al. Mechanically induced Ca(2+) oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res. 2018;6:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domenis R, Cifù A, Quaglia S, Pistis C, Moretti M, Vicario A, et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep. 2018;8:13325.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles. 2018;7:1522236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology. 2016;68:2125–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shrivastava S, Morris KV. The Multifunctionality of Exosomes; from the Garbage Bin of the Cell to a Next Generation Gene and Cellular Therapy. Genes. 2021;12:173.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomed. 2016;11:1745–56.

    Article 
    CAS 

    Google Scholar
     

  • Li YJ, Wu JY, Liu J, Xu W, Qiu X, Huang S, et al. Artificial exosomes for translational nanomedicine. J Nanobiotechnol. 2021;19:242.

    Article 

    Google Scholar
     

  • Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498–503.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335:201–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:21933.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J, et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater. 2021;6:2905–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles. 2023;12:e12386.

    Article 
    PubMed 

    Google Scholar
     

  • Qazi TH, Mooney DJ, Duda GN, Geissler S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017;140:103–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Zhao F, Huang D, Fu X, Li X, Chen X. Strontium-Substituted Submicrometer Bioactive Glasses Modulate Macrophage Responses for Improved Bone Regeneration. ACS Appl Mater Interfaces. 2016;8:30747–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goh WJ, Zou S, Ong WY, Torta F, Alexandra AF, Schiffelers RM, et al. Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems: a Cost-Effective Alternative. Sci Rep. 2017;7:14322.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itaka K, Ohba S, Miyata K, Kawaguchi H, Nakamura K, Takato T, et al. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol Ther J Am Soc Gene Ther. 2007;15:1655–62.

    Article 
    CAS 

    Google Scholar
     

  • Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 2019;10:30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao P, Xiao L, Peng J, Qian YQ, Huang CC. Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3962–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Zhou X, Zhang JT, Liu AF, Zhang C, Han JC, et al. Exosomal miR-186 derived from BMSCs promote osteogenesis through hippo signaling pathway in postmenopausal osteoporosis. J Orthop Surg Res. 2021;16:23.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weavers H, Evans IR, Martin P, Wood W. Corpse Engulfment Generates a Molecular Memory that Primes the Macrophage Inflammatory Response. Cell. 2016;165:1658–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu D, Kou X, Chen C, Liu S, Liu Y, Yu W, et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 2018;28:918–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Yang K, Cheng Y, Liu Y, Gu R, Liu X, et al. Apoptotic Vesicles Regulate Bone Metabolism via the miR1324/SNX14/SMAD1/5 Signaling Axis. Small. 2023;19:e2205813.

  • Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K, et al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell. 2016;15:744–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maas SLN, Breakefield XO, Weaver AM. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017;27:172–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA. 2010;107:6328–33.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu R, Shen X, Si Y, Fu Y, Zhu W, Xiao T, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell. 2018;17:e12794.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You M, Ai Z, Zeng J, Fu Y, Zhang L, Wu X. Bone mesenchymal stem cells (BMSCs)-derived exosomal microRNA-21-5p regulates Kruppel-like factor 3 (KLF3) to promote osteoblast proliferation in vitro. Bioengineered. 2022;13:11933–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu M, Zhai S, Fu Q, Liu D. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MicroRNA-150-3p Promotes Osteoblast Proliferation and Differentiation in Osteoporosis. Hum Gene Ther. 2021;32:717–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging. 2019;11:8777–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu H, Li Z, Lu M, Yun X, Li W, Liu C, et al. Osteoactivin inhibits dexamethasone-induced osteoporosis through up-regulating integrin β1 and activate ERK pathway. Biomed Pharmacother. 2018;105:66–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang B, Su Y, Shen E, Song M, Liu D, Qi H. Extracellular vesicles from GPNMB-modified bone marrow mesenchymal stem cells attenuate bone loss in an ovariectomized rat model. Life Sci. 2021;272:119208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16:440.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale. 2019;11:20884–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie H, Wang Z, Zhang L, Lei Q, Zhao A, Wang H, et al. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities. Sci Rep. 2017;7:45622.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Liu X, Zhao F, Yao M, Lin Z, Yang Z, et al. Bioactive glass nanoparticles inhibit osteoclast differentiation and osteoporotic bone loss by activating lncRNA NRON expression in the extracellular vesicles derived from bone marrow mesenchymal stem cells. Biomaterials. 2022;283:121438.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu A, Lin D, Zhao H, Chen L, Cai B, Lin K, et al. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway. Biomaterials. 2021;272:120718.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qayoom I, Teotia AK, Kumar A. Nanohydroxyapatite Based Ceramic Carrier Promotes Bone Formation in a Femoral Neck Canal Defect in Osteoporotic Rats. Biomacromolecules. 2020;21:328–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms Ageing Dev. 2008;129:163–73.

    Article 
    CAS 

    Google Scholar
     

  • Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med. 2012;16:582–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 2021;54:e12993.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji Z, Cai Z, Gu S, He Y, Zhang Z, Li T, et al. Exosomes Derived From Human Adipose-Derived Stem Cells Inhibit Lipogenesis Involving Hedgehog Signaling Pathway. Front Bioeng Biotechnol. 2021;9:734810.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee KS, Lee J, Kim HK, Yeom SH, Woo CH, Jung YJ, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J Extracell Vesicles. 2021;10:e12152.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren L, Song ZJ, Cai QW, Chen RX, Zou Y, Fu Q, et al. Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. Biochem Biophys Res Commun. 2019;508:138–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Wang Q, Su H, Cheng J. Exosomes from adipose derived mesenchymal stem cells alleviate diabetic osteoporosis in rats through suppressing NLRP3 inflammasome activation in osteoclasts. J Biosci Bioeng. 2021;131:671–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao XW, Liu ZY, Ma NF, Jiang WK, Zhou Z, Chen B, et al. Exosomes from Adipose-Derived Stem Cells Alleviate Dexamethasone-Induced Bone Loss by Regulating the Nrf2/HO-1 Axis. Oxid Med Cell Longev. 2023;2023:3602962.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong JP, Holme MN, Stevens MM. Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics. ACS Nano. 2017;11:69–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Wang Q, Su H, Cheng J. Exosomes from Adipose Tissues Derived Mesenchymal Stem Cells Overexpressing MicroRNA-146a Alleviate Diabetic Osteoporosis in Rats. Cell Mol Bioeng. 2022;15:87–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Mou S, Hou J, Fang H, Zeng Y, Sun J, et al. Simple application of adipose-derived stem cell-derived extracellular vesicles coating enhances cytocompatibility and osteoinductivity of titanium implant. Regen Biomater. 2021;8:rbaa038.

    Article 
    PubMed 

    Google Scholar
     

  • Chen L, Mou S, Li F, Zeng Y, Sun Y, Horch RE, et al. Self-Assembled Human Adipose-Derived Stem Cell-Derived Extracellular Vesicle-Functionalized Biotin-Doped Polypyrrole Titanium with Long-Term Stability and Potential Osteoinductive Ability. ACS Appl Mater interfaces. 2019;11:46183–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Liu Y, Zhang P, Tang Y, Zhou M, Jiang W, et al. Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Appl Mater interfaces. 2018;10:5240–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang BC, Kuang MJ, Kang JY, Zhao J, Ma JX, Ma XL. Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis. Biochem Biophys Res Commun. 2020;524:883–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren SW, Cao GQ, Zhu QR, He MG, Wu F, Kong SM, et al. Exosomes derived from human umbilical cord mesenchymal stem cells promote osteogenesis through the AKT signaling pathway in postmenopausal osteoporosis. Aging. 2022;14:10125–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Zhang Y, Ni CY, Chen CY, Rao SS, Yin H, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics. 2020;10:2293–308.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yahao G, Xinjia W. The Role and Mechanism of Exosomes from Umbilical Cord Mesenchymal Stem Cells in Inducing Osteogenesis and Preventing Osteoporosis. Cell Transplant. 2021;30:9636897211057465.

    Article 
    PubMed 

    Google Scholar
     

  • Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, et al. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. Int J Biol Sci. 2016;12:836–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem cell Res Ther. 2020;11:38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Zhu D, Jin F, Li S, Liu X, Wang X. Peptide modified geniposidic acid targets bone and effectively promotes osteogenesis. J Orthop Transl. 2023;38:23–31.


    Google Scholar
     

  • Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, et al. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater. 2022;10:207–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:149–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen CY, Rao SS, Tan YJ, Luo MJ, Hu XK, Yin H, et al. Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Res. 2019;7:18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi YY, Nacamuli RP, Salim A, Longaker MT. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstructive Surg. 2005;116:1686–96.

    Article 
    CAS 

    Google Scholar
     

  • Latest Intelligence