Search
Close this search box.

Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds – Nature Communications

  • Blanchard, R. L., Freimuth, R. R., Buck, J., Weinshilboum, R. M. & Coughtrie, M. W. H. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics 14, 199–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Men, P. et al. Biosynthesis mechanism, genome mining and artificial construction of echinocandin O-sulfonation. Metab. Eng. 74, 160–167 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. et al. Mechanistic and structural insights into the specificity and biological functions of bacterial sulfoglycosidases. ACS Catal. 13, 824–836 (2023).

    Article  CAS  Google Scholar 

  • Luis, A. S. et al. Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nat. Chem. Biol. 18, 841–849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malojcić, G. et al. A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 105, 19217–19222 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Liu, F., Yang, H., Wang, L. & Yu, B. Biosynthesis of the high-value plant secondary product benzyl isothiocyanate via functional expression of multiple heterologous enzymes in Escherichia coli. ACS Synth. Biol. 5, 1557–1565 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar, J., Chidambaram, R. & Sukumaran, S. Sulfated polysaccharides and its commercial applications in food industries—A review. J. Food Sci. Technol. 58, 2453–2466 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., Shen, M., Morris, G. A. & Xie, J. Sulfated polysaccharides: Immunomodulation and signaling mechanisms. Trends Food Sci. Technol. 92, 1–11 (2019).

    Article  CAS  Google Scholar 

  • Chen, Y. et al. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat. Commun. 13, 5434 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. S. et al. Tyrosine sulfation as a protein post-translational modification. Molecules 20, 2138–2164 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, R. E. et al. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors. Nat. Chem. 9, 909–917 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Mauvais-Jarvis, F., Clegg, D. J. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radka, C. D., Miller, D. J., Frank, M. W. & Rock, C. O. Biochemical characterization of the first step in sulfonolipid biosynthesis in Alistipes finegoldii. J. Biol. Chem. 298, 102195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojarová, P. & Williams, S. J. Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination. Curr. Opin. Chem. Eng. 12, 573–581 (2008).

    Article  Google Scholar 

  • Klaassen, C. D. & Boles, J. W. Sulfation and sulfotransferases 5: the importance of 3’-phosphoadenosine 5’-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J. 11, 404–418 (1997).

    Article  CAS  PubMed  Google Scholar 

  • van den Boom, J., Heider, D., Martin, S. R., Pastore, A. & Mueller, J. W. 3′-Phosphoadenosine 5′-phosphosulfate (PAPS) synthases, naturally fragile enzymes specifically stabilized by nucleotide binding. J. Biol. Chem. 287, 17645–17655 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkart, M. D., Izumi, M. & Wong, C. H. Enzymatic regeneration of 3’-phosphoadenosine-5’-phosphosulfate using aryl sulfotransferase for the preparative enzymatic synthesis of sulfated carbohydrates. Angew. Chem. Int. Ed. 38, 2747–2750 (1999).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1521-3773(19990917)38:183.0.CO;2-2″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291521-3773%2819990917%2938%3A18%3C2747%3A%3AAID-ANIE2747%3E3.0.CO%3B2-2″ aria-label=”Article reference 17″ data-doi=”10.1002/(SICI)1521-3773(19990917)38:183.0.CO;2-2″>Article  CAS  Google Scholar 

  • Zhou, Z. et al. A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans. Biotechnol. Bioeng. 115, 1561–1570 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z. et al. Secretory expression of the rat aryl sulfotransferases IV with improved catalytic efficiency by molecular engineering. 3 Biotechnol. 9, 246 (2019).

    Google Scholar 

  • Datta, P. et al. Expression of enzymes for 3’-phosphoadenosine-5’-phosphosulfate (PAPS) biosynthesis and their preparation for PAPS synthesis and regeneration. Appl. Microbiol. Biotechnol. 104, 7067–7078 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Synthesis of bioengineered heparin by recombinant yeast Pichia pastoris. Green. Chem. 24, 3180–3192 (2022).

    Article  CAS  Google Scholar 

  • Bhaskar, U. et al. Combinatorial one-pot chemoenzymatic synthesis of heparin. Carbohydr. Polym. 122, 399–407 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Xi, X. et al. Improvement of the stability and catalytic efficiency of heparan sulfate N-sulfotransferase for preparing N-sulfated heparosan. J. Ind. Microbiol. Biotechnol. 50, kuad012 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, Z. et al. Bio-based strategies for producing glycosaminoglycans and their oligosaccharides. Trends Biotechnol. 36, 806–818 (2018).

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis, P. L., Liu, J. & Linhardt, R. J. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature’s longest or most complex carbohydrate chains. Glycobiology 23, 764–777 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Chandarajoti, K., Pham, T. Q., Liu, R. & Liu, J. Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3’-phosphoadenosine-5’-phosphosulfate. Glycobiology 21, 771–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, F. et al. Hydrolysis of by-product adenosine diphosphate from 3’-phosphoadenosine-5’-phosphosulfate preparation using Nudix hydrolase NudJ. Appl. Microbiol. Biotechnol. 99, 10771–10778 (2015).

    Article  CAS  PubMed  Google Scholar 

  • An, C., Zhao, L., Wei, Z. & Zhou, X. Chemoenzymatic synthesis of 3’-phosphoadenosine-5’-phosphosulfate coupling with an ATP regeneration system. Appl. Microbiol. Biotechnol. 101, 7535–7544 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Petchey, M. R., Rowlinson, B., Lloyd, R. C., Fairlamb, I. J. S. & Grogan, G. Biocatalytic synthesis of moclobemide using the amide bond synthetase McbA coupled with an ATP recycling system. ACS Catal. 10, 4659–4663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk, J., Blaschke, L., Aßmann, M., Kuballa, J. & Elling, L. Integration of a nucleoside triphosphate regeneration system in the one-pot synthesis of UDP-sugars and hyaluronic acid. ChemSusChem 13, 3074–3083 (2021).

    CAS  Google Scholar 

  • Xu, R. et al. Closed-loop system driven by ADP phosphorylation from pyrophosphate affords equimolar transformation of ATP to 3′-phosphoadenosine-5′-phosphosulfate. ACS Catal. 11, 10405–10415 (2021).

    Article  CAS  Google Scholar 

  • Hatzios, S. K. et al. The Mycobacterium tuberculosis CysQ phosphatase modulates the biosynthesis of sulfated glycolipids and bacterial growth. Bioorg. Med. Chem. Lett. 21, 4956–4959 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, E., Best, M. D., Hanson, S. R. & Wong, C. H. Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. 43, 3526–3548 (2004).

    Article  CAS  Google Scholar 

  • Jin, X. et al. Optimizing the sulfation-modification system for scale preparation of chondroitin sulfate A. Carbohydr. Polym. 246, 116570 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Günal, S., Hardman, R., Kopriva, S. & Mueller, J. W. Sulfation pathways from red to green. J. Biol. Chem. 294, 12293–12312 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Motomura, K. et al. A new subfamily of polyphosphate kinase 2 (class III PPK2) catalyzes both nucleoside monophosphate phosphorylation and nucleoside diphosphate phosphorylation. Appl. Environ. Microbiol. 80, 2602–2608 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Ishige, K., Zhang, H. & Kornberg, A. Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP. Proc. Natl Acad. Sci. USA 99, 16684–16688 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougous, J. D. et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat. Struct. Mol. Biol. 11, 721–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W. et al. Enzymatic production of chondroitin oligosaccharides and its sulfate derivatives. Front Bioeng. Biotechnol. 10, 951740 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Morciano, G. et al. Use of luciferase probes to measure ATP in living cells and animals. Nat. Protoc. 12, 1542–1562 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Duffel, M. W., Marshal, A. D., McPhie, P., Sharma, V. & Jakoby, W. B. Enzymatic aspects of the phenol (aryl) sulfotransferases. Drug Metab. Rev. 33, 369–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Li, F. L., Zhou, Q., Wei, W., Gao, J. & Zhang, Y. W. Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus. Int. J. Biol. Macromol. 135, 328–336 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., Bhatnagar, A. & Sadoshima, J. Overview of pyridine nucleotides review series. Circ. Res. 111, 604–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallé, F., Fin, A., Rovira, A. R. & Tor, Y. Emissive synthetic cofactors: enzymatic interconversions of tzA analogues of ATP, NAD+, NADH, NADP+, and NADPH. Angew. Chem. Int. Ed. Engl. 57, 1087–1090 (2018).

    Article  PubMed  Google Scholar 

  • Rath, V. L., Verdugo, D. & Hemmerich, S. Sulfotransferase structural biology and inhibitor discovery. Drug Discov. Today 9, 1003–1011 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Huq, A. H. et al. Dopamine 4-sulfate: effects on isolated perfused rat heart and role of atria. Life Sci. 43, 1599–1606 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. et al. Sulfation modification of dopamine in brain regulates aggregative behavior of animals. Natl Sci. Rev. 9, nwab163 (2022).

    Article  PubMed  Google Scholar 

  • Everett, J.R. Applications of metabolic phenotyping in pharmaceutical research and development, The Handbook of Metabolic Phenotyping. (eds. J. C. Lindon, J. K. Nicholson & E. Holmes) 407–447 (Elsevier, 2019).

  • Ye, D. et al. Investigation of the catalytic site within the ATP-grasp domain of Clostridium symbiosum pyruvate phosphate dikinase. J. Biol. Chem. 276, 37630–37639 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Barbosa, A. C. S., Feng, Y., Yu, C., Huang, M. & Xie, W. Estrogen sulfotransferase in the metabolism of estrogenic drugs and in the pathogenesis of diseases. Expert. Opin. Drug. Metab. Toxicol. 15, 329–339 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakuta, Y., Pedersen, L. G., Pedersen, L. C. & Negishi, M. Conserved structural motifs in the sulfotransferase family. Trends Biochem. Sci. 23, 129–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Xie, L. et al. Combinatorial biosynthesis of sulfated benzenediol lactones with a phenolic sulfotransferase from Fusarium graminearum PH-1. mSphere 5, e00949–00920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkart, M. D., Izumi, M., Chapman, E., Lin, C. H. & Wong, C. H. Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides. J. Org. Chem. 65, 5565–5574 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. et al. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334, 498–501 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri, A., Williams, A., Xia, K., Linhardt, R. J. & Koffas, M. A. G. Increased 3’-phosphoadenosine-5’-phosphosulfate levels in engineered Escherichia coli cell lysate facilitate the in vitro synthesis of chondroitin sulfate A. Biotechnol. J. 14, e1800436 (2019).

    Article  PubMed  Google Scholar 

  • Parnell, A. E. et al. Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proc. Natl Acad. Sci. USA 115, 3350–3355 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Nocek, B. P. et al. Structural insights into substrate selectivity and activity of bacterialpolyphosphate kinases. ACS Catal. 8, 10746–10760 (2018).

    Article  CAS  Google Scholar 

  • Erickson, A. I., Sarsam, R. D. & Fisher, A. J. Crystal structures of Mycobacterium tuberculosis CysQ, with substrate and products bound. Biochemistry 54, 6830–6841 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Neuwald, A. F. et al. cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J. Bacteriol. 174, 415–425 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bounaga, A. et al. Microbial transformations by sulfur bacteria can recover value from phosphogypsum: a global problem and a possible solution. Biotechnol. Adv. 57, 107949 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Hatzios, S. K. & Bertozzi, C. R. The regulation of sulfur metabolism in Mycobacterium tuberculosis. PLoS Pathog. 7, e1002036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paritala, H. & Carroll, K. S. New targets and inhibitors of mycobacterial sulfur metabolism. Infect. Disord. Drug Targets 13, 85–115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, Y. et al. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res. 47, e15 (2019).

    Article  PubMed  Google Scholar 

  • Zhu, X. et al. Combining CRISPR–Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coli. ACS Synth. Biol. 11, 1897–1907 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H. et al. Structure and cleavage pattern of a hyaluronate 3-glycanohydrolase in the glycoside hydrolase 79 family. Carbohydr. Polym. 277, 118838 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Qu, G., Li, A., Acevedo-Rocha, C. G., Sun, Z. & Reetz, M. T. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 59, 13204–13231 (2020).

    Article  CAS  Google Scholar 

  • Xu, R. et al. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds. Figshare. https://doi.org/10.6084/m9.figshare.24449563 (2023).