Search
Close this search box.

Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling – Nature Communications

  • Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenhalgh, K., Meyer, K. M., Aagaard, K. M. & Wilmes, P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 18, 2103–2116 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, M. et al. Integrated Meta–omics Approaches To Understand The Microbiome Of Spontaneous Fermentation Of Traditional Chinese Pu–erh Tea. mSystems 4, e00680–19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Widdig, M. et al. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biol. Biochem. 151, 1467–1477 (2020).

    Article 

    Google Scholar
     

  • Camenzind, T., Philipp Grenz, K., Lehmann, J. & Rillig, M. C. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol. Lett. 24, 208–218 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self–mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, S. K., Kim, S. H., Yoon, J. J. & Yang, Y. H. Current status and strategies for second generation biofuel production using microbial systems. Energ. Convers. Manag. 148, 1142–1156 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y., Dong, W., Xin, F. & Jiang, M. Designing synthetic microbial consortia for biofuel production. Trends Biotechnol. 38, 828–831 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J. 8, 1932–1944 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, S. et al. A synergistic consortium involved in Rac-dichlorprop degradation as revealed by DNA-stable isotope probing and metagenomics analysis. Appl. Environ. Microbiol. 87, e01562–21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, M. et al. Oxygenases as powerful weapons in the microbial degradation of pesticides. Annu. Rev. Microbiol. 76, 325–348 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanapaisan, P. et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment–derived bacterial consortium. J. Hazard. Mater. 342, 561–570 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dejonghe, W. et al. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron–degrading Variovorax strain. Appl. Environ. Microbiol. 69, 1532–1541 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hennessee, C. T. & Li, Q. X. Effects of polycyclic aromatic hydrocarbon mixtures on degradation, gene expression, and metabolite production in four Mycobacterium species. Appl. Environ. Microbiol. 82, 3357–3369 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burmølle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916–3923 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA. 111, E2149–E2156 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roucher, A. et al. From Compartmentalization Of Bacteria Within Inorganic Macrocellular Beads To The Assembly Of Microbial Consortia. Adv. Biosyst. 2, 1700233 (2018).

    Article 

    Google Scholar
     

  • Opatovsky, I. et al. Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host–simulated environment. BMC Genomics 19, 1–14 (2018).

    Article 

    Google Scholar
     

  • Xu, X. et al. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME J. 13, 494–508 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prina, M. G., Manzolini, G., Moser, D., Nastasi, B. & Sparber, W. Classification and challenges of bottom–up energy system models—A review. Renew. Sust. Energ. Rev. 129, 109917 (2020).

    Article 

    Google Scholar
     

  • Bernstein, H. C. Reconciling ecological and engineering design principles for building microbiomes. mSystems 4, e00106–e00119 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thingstad, T. F. & Våge, S. Host–virus–predator coexistence in a grey–box model with dynamic optimization of host fitness. ISME J. 13, 3102–3111 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C. Y. et al. Engineering complex communities by directed evolution. Nat. Ecol. Evol. 5, 1011–1023 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneijderberg, M. et al. Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co–occurring plant species with a longer life history. ISME J. 14, 2433–2448 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckmann, S. et al. Long–term succession in a coal seam microbiome during in situ biostimulation of coalbed–methane generation. ISME J. 13, 632–650 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuñiga, C., Zaramela, L. & Zengler, K. Elucidation of complexity and prediction of interactions in microbial communities. Microb. Biotechnol. 10, 1500–1522 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henry, C. S. et al. Microbial community metabolic modeling: a community data–driven network reconstruction. J. Cell. Physiol. 231, 2339–2345 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García–Jiménez, B., Torres–Bacete, J. & Nogales, J. Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J. 19, 226–246 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rocha, M. et al. Natural computation meta–heuristics for the in silico optimization of microbial strains. BMC Bioinforma. 9, 499 (2008).

    Article 

    Google Scholar
     

  • Chan, S. H. J., Cai, J., Wang, L., Simons–Senftle, M. N. & Maranas, C. D. Standardizing biomass reactions and ensuring complete mass balance in genome–scale metabolic models. Bioinformatics 33, 3603–3609 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundy, M., Mendes–Soares, H. & Chia, N. Mackinac: A bridge between ModelSEED and COBRApy to generate and analyze genome–scale metabolic models. Bioinformatics 33, 2416–2418 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, D., Kameya, T. & Urano, K. Environmental management of pesticidal POPs in China: Past, present and future. Environ. Int. 33, 894–902 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noyes, P. D. et al. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 35, 971–986 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alharbi, O. M. L., Basheer, A. A., Khattab, R. A. & Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S. & Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. N. Biotechnol. 32, 147–156 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tesfamichael, A. A. & Kaluarachchi, J. J. A methodology to assess the risk of an existing pesticide and potential future pesticides for regulatory decision–making. Environ. Sci. Policy 9, 275–290 (2006).

    Article 

    Google Scholar
     

  • Peterson, R. K. D. & Hulting, A. G. A comparative ecological risk assessment for herbicides used on spring wheat: the effect of glyphosate when used within a glyphosate–tolerant wheat system. Weed Sci. 52, 834–844 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Buhl, K. J. & Faerber, N. L. Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius. Arch. Environ. Contam. Toxicol. 18, 530–536 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Rosic, N., Bradbury, J., Lee, M., Baltrotsky, K. & Grace, S. The impact of pesticides on local waterways: A scoping review and method for identifying pesticides in local usage. Environ. Sci. Policy 106, 12–21 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pizl, V. Interactions between earthworms and herbicides. I. Toxicity of some herbicides to earthworms in laboratory tests. Pedobiologia 32, 3–4 (1988).

    Article 

    Google Scholar
     

  • Golovleva, L. A., Pertsova, R. N., Kunc, F. & Vokounová, M. Decomposition of the herbicide bromoxynil in soil and in bacterial cultures. Folia Microbiol. 33, 491–499 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Holtze, M. S., Sørensen, S. R., Sørensen, J. & Aamand, J. Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments—Insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ. Pollut. 154, 155–168 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. An essential esterase (BroH) for the mineralization of bromoxynil octanoate by a natural consortium of Sphingopyxis sp. strain OB-3 and Comamonas sp. strain 7D-2. J. Agric. Food Chem. 61, 11550–11559 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knossow, N., Siebner, H. & Bernstein, A. Isotope Fractionation (δ13C, δ15N) in the microbial degradation of bromoxynil by aerobic and anaerobic soil enrichment cultures. J. Agric. Food Chem. 68, 1546–1554 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Achermann, S., Mansfeldt, C. B., Müller, M., Johnson, D. R. & Fenner, K. Relating Metatranscriptomic profiles to the micropollutant biotransformation potential of complex microbial communities. Environ. Sci. Technol. 54, 235–244 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan, Z. et al. Comparative genomic analysis of Pseudoxanthomonas sp. X-1, a bromoxynil octanoate degrading bacterium, and Its Related Type Strains. Curr. Microbiol. 79, 65 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol. Microbiol. 89, 1121–1139 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Comparative transcriptome analysis reveals the mechanism underlying 3,5–dibromo–4–hydroxybenzoate catabolism via a new oxidative decarboxylation pathway. Appl. Environ. Microbiol. 84, 1–16 (2018).

    Article 

    Google Scholar
     

  • Li, Z. et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant–induced systemic resistance. Microbiome 9, 217 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA. 114, E2450–E2459 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, B. C. et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems 5, e00901–e00919 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, G. et al. Microbiome definition re–visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javdan, B. et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell 181, 1661–1679.e22 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, V., Baweja, M., Singh, P. K. & Shukla, P. Recent developments in systems biology and metabolic engineering of plant–microbe interactions. Front. Plant Sci. 7, 1421 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze–Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maignien, L., DeForce, E. A., Chafee, M. E., Murat Eren, A. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5, e00682–e00713 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Hou, Q., Liu, W., Meng, Y. & Wang, G. Dynamic changes of bacterial community under bioremediation with Sphingobium sp. LY-6 in buprofezin-contaminated Soil. Bioprocess. Biosyst. Eng. 38, 1485–1493 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. et al. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ. Pollut. 223, 657–664 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. H. et al. Endophytic Phthalate-degrading Bacillus subtilis N-1-gfp colonizing in soil-crop system shifted indigenous bacterial community to remove di-n-butyl phthalate. J. Hazard. Mater. 449, 130993 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacwa-Płociniczak, M., Czapla, J., Płociniczak, T. & Piotrowska-Seget, Z. The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicol. Environ. Saf. 169, 615–622 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Soil bacterial community dynamics following bioaugmentation with Paenarthrobacter sp. W11 in atrazine-contaminated soil. Chemosphere 282, 130976 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y., Li, N., Zhao, Q. & Xie, S. Bioremediation using Novosphingobium strain DY4 for 2, 4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 26, 161–170 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdullaeva, Y., Ambika Manirajan, B., Honermeier, B., Schnell, S. & Cardinale, M. Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J. Adv. Res. 31, 75–86 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Chen, K., Chuang, S., Xu, X. & Jiang, J. Shift in bacterial community structure drives different atrazine–degrading efficiencies. Front. Microbiol. 10, 88 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kost, C., Patil, K. R., Friedman, J., Garcia, S. L. & Ralser, M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat. Microbiol. 8, 2244–2252 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LaSarre, B., McCully, A. L., Lennon, J. T. & McKinlay, J. B. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J. 11, 337–348 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schäfer, M. et al. Metabolic interaction models recapitulate leaf microbiota ecology. Science 381, eadf5121 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, J. S. L. et al. Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance. Nat. Microbiol. 7, 542–555 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryback, B., Bortfeld-Miller, M. & Vorholt, J. A. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. ISME J. 16, 2712–2724 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, Z. B. et al. Two-tiered mutualism improves survival and competitiveness of cross-feeding soil bacteria. ISME J. 17, 2090–2102 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Nitrogen transfer and cross-feeding between Azotobacter chroococcum and Paracoccus aminovorans promotes pyrene degradation. ISME J. 17, 2169–2181 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat. Commun. 14, 5394 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061–1072 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, M. K. et al. A low–cost paper–based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9, 3347 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • St John, P. C. & Bomble, Y. J. Approaches to computational strain design in the multiomics era. Front. Microbiol. 10, 597 (2019).

    Article 

    Google Scholar
     

  • Keshava, R., Mitra, R., Gope, M. L. & Gope, R. Synthetic biology: Overview and Applications. Omics Technol. Bio–Eng.: Towards Improv. Qual. Life 1, 63–93 (2018).

    Article 

    Google Scholar
     

  • Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology–independent targeted integration. Nature 540, 144–149 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casini, A., Storch, M., Baldwin, G. S. & Ellis, T. Bricks and blueprints: Methods and standards for DNA assembly. Nat. Rev. Mol. Cell Biol. 16, 568–576 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J., Luo, Y. & Zhao, H. Synthetic biology: Putting synthesis into biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 7–20 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, R. A. & Ellington, A. D. Synthetic DNA synthesis and assembly: Putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9, a023812 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High–resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web–based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schloss, P. D. et al. Introducing mothur: Open–source, platform–independent, community–supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article 

    Google Scholar
     

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomsadze, A. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry, C. S. et al. High–throughput generation, optimization and analysis of genome–scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context–specific metabolic network models. PLoS Comput. Biol. 10, e1003424 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heirendt, L. et al. Creation and analysis of biochemical constraint–based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and Metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article 

    Google Scholar
     

  • Bateman, A. et al. UniProt: A hub for protein information. Nucleic Acids Res. 43, D204–D412 (2015).

    Article 

    Google Scholar
     

  • Norsigian, C. J. et al. BiGG Models 2020: Multi–strain genome–scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 48, D402–D406 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, I. M. A. et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes–a 2019 update. Nucleic Acids Res. 48, D445–D453 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, S. H. J., Simons, M. N. & Maranas, C. D. SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Comput. Biol. 13, e1005539 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome–scale models. Mol. Syst. Biol. 6, 390 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tjaden, B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 16, 1 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, Z. P. et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. GitHub https://doi.org/10.5072/zenodo.53095 (2023).