Search
Close this search box.

Engineering brain-on-a-chip platforms – Nature Reviews Bioengineering

  • Nichols, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7, e105–e125 (2022).

    Article 

    Google Scholar
     

  • Feigin, V. L. et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).

    Article 

    Google Scholar
     

  • Velandia, P. P. et al. Global and regional spending on dementia care from 2000–2019 and expected future health spending scenarios from 2020–2050: an economic modelling exercise. EClinicalMedicine 45, 101337 (2022).

    Article 

    Google Scholar
     

  • GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    Article 

    Google Scholar
     

  • Pollak, T. A. et al. The blood–brain barrier in psychosis. Lancet Psychiatry 5, 79–92 (2018).

    Article 

    Google Scholar
     

  • McCutcheon, R. A., Reis Marques, T. & Howes, O. D. Schizophrenia — an overview. JAMA Psychiatry 77, 201 (2020).

    Article 

    Google Scholar
     

  • Millan, M. J. et al. Altering the course of schizophrenia: progress and perspectives. Nat. Rev. Drug Discov. 15, 485–515 (2016).

    Article 

    Google Scholar
     

  • McNally, J. M. & McCarley, R. W. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities. Curr. Opin. Psychiatry 29, 202–210 (2016).

    Article 

    Google Scholar
     

  • Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article 

    Google Scholar
     

  • Canter, R. G., Penney, J. & Tsai, L. H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539, 187–196 (2016).

    Article 

    Google Scholar
     

  • Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Primers 7, 33 (2021).

    Article 

    Google Scholar
     

  • Hampel, H. et al. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 26, 5481–5503 (2021).

    Article 

    Google Scholar
     

  • Tzioras, M., McGeachan, R. I., Durrant, C. S. & Spires-Jones, T. L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 19, 19–38 (2023).

    Article 

    Google Scholar
     

  • Hosoki, S. et al. Molecular biomarkers for vascular cognitive impairment and dementia. Nat. Rev. Neurol. 19, 737–753 (2023).

    Article 

    Google Scholar
     

  • Perovnik, M., Rus, T., Schindlbeck, K. A. & Eidelberg, D. Functional brain networks in the evaluation of patients with neurodegenerative disorders. Nat. Rev. Neurol. 19, 73–90 (2023).

    Article 

    Google Scholar
     

  • Arrowsmith, J. Phase II failures: 2008–2010. Nat. Rev. Drug Discov. 10, 328–329 (2011).

    Article 

    Google Scholar
     

  • Arrowsmith, J. Phase III and submission failures: 2007–2010. Nat. Rev. Drug Discov. 10, 87 (2011).

    Article 

    Google Scholar
     

  • Arrowsmith, J. & Miller, P. Phase II and phase III attrition rates 2011–2012. Nat. Rev. Drug Discov. 12, 569 (2013).

    Article 

    Google Scholar
     

  • Smietana, K., Siatkowski, M. & Møller, M. Trends in clinical success rates. Nat. Rev. Drug Discov. 15, 379–380 (2016).

    Article 

    Google Scholar
     

  • Sun, D., Gao, W., Hu, H. & Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 12, 3049–3062 (2022).

    Article 

    Google Scholar
     

  • Butlen-Ducuing, F. et al. Challenges in drug development for central nervous system disorders: a European Medicines Agency perspective. Nat. Rev. Drug Discov. 15, 813–814 (2016).

    Article 

    Google Scholar
     

  • Kesselheim, A. S., Hwang, T. J. & Franklin, J. M. Two decades of new drug development for central nervous system disorders. Nat. Rev. Drug Discov. 14, 815–816 (2015).

    Article 

    Google Scholar
     

  • Gribkoff, V. K. & Kaczmarek, L. K. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120, 11–19 (2017).

    Article 

    Google Scholar
     

  • Danon, J. J., Reekie, T. A. & Kassiou, M. Challenges and opportunities in central nervous system drug discovery. Trends Chem. 1, 612–624 (2019).

    Article 

    Google Scholar
     

  • Paul, S. M. et al. How to improve RD productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article 

    Google Scholar
     

  • Han, J. J. FDA modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 47, 449–450 (2023).

    Article 

    Google Scholar
     

  • Stewart, A., Denoyer, D., Gao, X. & Toh, Y.-C. The FDA modernisation act 2.0: bringing non-animal technologies to the regulatory table. Drug Discov. Today 28, 103496 (2023).

    Article 

    Google Scholar
     

  • Franzen, N. et al. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov. Today 24, 1720–1724 (2019).

    Article 

    Google Scholar
     

  • Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    Article 

    Google Scholar
     

  • Stresser, D. M. et al. Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01154-7 (2023).

    Article 

    Google Scholar
     

  • Li, T. L. et al. Stretchable mesh microelectronics for the Biointegration and stimulation of neural organoids. Biomaterials 290, 121825 (2022).

    Article 

    Google Scholar
     

  • Floch, P. L. et al. Stretchable mesh nanoelectronics for 3D single-cell chronic electrophysiology from developing brain organoids. Adv. Mater. 34, e2106829 (2022).

    Article 

    Google Scholar
     

  • Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02081-3 (2024).

    Article 

    Google Scholar
     

  • Li, Q. et al. Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 19, 5781–5789 (2019). This article reports flexible electronics that can be wrapped into tissue models during cell aggregation.

    Article 

    Google Scholar
     

  • Skylar-Scott, M. A. et al. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat. Biomed. Eng. 6, 449–462 (2022).

    Article 

    Google Scholar
     

  • You, S. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Peptide programmed hydrogels as safe sanctuary microenvironments for cell transplantation. Adv. Funct. Mater. 30, 1900390 (2020).

    Article 

    Google Scholar
     

  • Law, K. C. L. et al. A selective, hydrogel‐based prodrug delivery system efficiently activates a suicide gene to remove undifferentiated human stem cells within neural grafts. Adv. Funct. Mater. 33, 2305771 (2023).

    Article 

    Google Scholar
     

  • Nakatsuka, N. et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018). This article reports aptamer–field-effect transistors combining the versatility of an aptamer bio-recognition element with the high sensitivity of field-effect transistors.

    Article 

    Google Scholar
     

  • Nakatsuka, N. et al. Sensing serotonin secreted from human serotonergic neurons using aptamer-modified nanopipettes. Mol. Psychiatry 26, 2753–2763 (2021).

    Article 

    Google Scholar
     

  • Zhao, C. et al. Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).

    Article 

    Google Scholar
     

  • Abbott, N. J. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol. Neurobiol. 25, 5–23 (2005).

    Article 

    Google Scholar
     

  • Kasinathan, N., Jagani, H. V., Alex, A. T., Volety, S. M. & Venkata Rao, J. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv. 22, 243–257 (2015).

    Article 

    Google Scholar
     

  • Pardridge, W. M. The blood-brain barrier: bottleneck in brain drug development. NeuroRX 2, 3–14 (2005).

    Article 

    Google Scholar
     

  • Sierra, S. et al. Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J. Alzheimer’s Dis. 23, 307–318 (2011).

    Article 

    Google Scholar
     

  • Wolff, A., Antfolk, M., Brodin, B. & Tenje, M. In vitro blood-brain barrier models — an overview of established models and new microfluidic approaches. J. Pharm. Sci. 104, 2727–2746 (2015).

    Article 

    Google Scholar
     

  • Liu, C. C. et al. Peripheral apoE4 enhances Alzheimer’s pathology and impairs cognition by compromising cerebrovascular function. Nat. Neurosci. 25, 1020–1033 (2022).

    Article 

    Google Scholar
     

  • Chuapoco, M. R. et al. Adeno-associated viral vectors for functional intravenous gene transfer throughout the non-human primate brain. Nat. Nanotechnol. 18, 1241–1251 (2023).

    Article 

    Google Scholar
     

  • Chen, X. et al. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat. Commun. 14, 3345 (2023).

    Article 

    Google Scholar
     

  • Zhang, S. L., Yue, Z., Arnold, D. M., Artiushin, G. & Sehgal, A. A circadian clock in the blood-brain barrier regulates xenobiotic efflux. Cell 173, 130–139.e10 (2018).

    Article 

    Google Scholar
     

  • Yao, Y. et al. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood–brain barrier in rodents and primates. Nat. Biomed. Eng. 6, 1257–1271 (2022).

    Article 

    Google Scholar
     

  • Wang, P. et al. Blood–brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung–brain microphysiological system. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01054-w (2023).

    Article 

    Google Scholar
     

  • Padmanabhan, P. & Götz, J. Clinical relevance of animal models in aging-related dementia research. Nat. Aging 3, 481–493 (2023).

    Article 

    Google Scholar
     

  • McClain, S. P. et al. In vivo photopharmacology with light-activated opioid drugs. Neuron 111, 3926–3940.e10 (2023).

    Article 

    Google Scholar
     

  • Chung, J. E. et al. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110, 2409–2421.e3 (2022).

    Article 

    Google Scholar
     

  • Luo, T. Z. et al. An approach for long-term, multi-probe neuropixels recordings in unrestrained rats. eLife 9, e59716 (2020).

    Article 

    Google Scholar
     

  • van Daal, R. J. J. et al. Implantation of Neuropixels probes for chronic recording of neuronal activity in freely behaving mice and rats. Nat. Protoc. 16, 3322–3347 (2021).

    Article 

    Google Scholar
     

  • Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021). The article reports one of the highest-density probes, which can record densely packed neurons across multiple cortical layers.

    Article 

    Google Scholar
     

  • Ji, B. et al. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosens. Bioelectron. 153, 112009 (2020).

    Article 

    Google Scholar
     

  • Obaid, A. et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci. Adv. 6, eaay2789 (2020).

    Article 

    Google Scholar
     

  • Leber, M. et al. in Neural Interface: Frontiers and Applications (ed. Zheng, X.) Ch. 1 (Springer, 2019). [Series Eds Crusio, W. E. et al. Advances in Experimental Medicine and Biology Vol. 1101].

  • Holmes, A., Bonner, F. & Jones, D. Assessing drug safety in human tissues-what are the barriers? Nat. Rev. Drug Discov. 14, 585–587 (2015).

    Article 

    Google Scholar
     

  • Haring, A. P., Sontheimer, H. & Johnson, B. N. Microphysiological human brain and neural systems-on-a-chip: potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine. Stem Cell Rev. Rep. 13, 381–406 (2017).

    Article 

    Google Scholar
     

  • Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article 

    Google Scholar
     

  • Hajal, C., Le Roi, B., Kamm, R. D. & Maoz, B. M. Biology and models of the blood-brain barrier. Annu. Rev. Biomed. Eng. 23, 359–384 (2021).

    Article 

    Google Scholar
     

  • Bang, S., Lee, S., Choi, N. & Kim, H. N. Emerging brain-pathophysiology-mimetic platforms for studying neurodegenerative diseases: brain organoids and brains-on-a-chip. Adv. Healthc. Mater. 10, e202002119 (2021).

    Article 

    Google Scholar
     

  • Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article 

    Google Scholar
     

  • Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article 

    Google Scholar
     

  • Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article 

    Google Scholar
     

  • Son, Y. et al. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci. Rep. 5, 15466 (2015).

    Article 

    Google Scholar
     

  • Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article 

    Google Scholar
     

  • Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article 

    Google Scholar
     

  • Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).

    Article 

    Google Scholar
     

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article 

    Google Scholar
     

  • Park, J. S. et al. A multimodality CMOS sensor array for cell-based assay and drug screening. Dig. Tech. Pap. IEEE Int. Solid. State Circuits Conf. 58, 208–209 (2015).


    Google Scholar
     

  • Miccoli, B. et al. High-density electrical recording and impedance imaging with a multi-modal CMOS multi-electrode array chip. Front. Neurosci. 13, 641 (2019).

    Article 

    Google Scholar
     

  • Wen, X. et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens. Bioelectron. 131, 37–45 (2019).

    Article 

    Google Scholar
     

  • Huang, Q. et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci. Adv. 8, eabq5031 (2022).

    Article 

    Google Scholar
     

  • Cools, J. et al. A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells. Adv. Sci. 5, 1700731 (2018).

    Article 

    Google Scholar
     

  • Shin, H. et al. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat. Commun. 12, 492 (2021).

    Article 

    Google Scholar
     

  • Ryynänen, T. et al. Microelectrode array with transparent ALD TiN electrodes. Front. Neurosci. 13, 226 (2019).

    Article 

    Google Scholar
     

  • Kshirsagar, P. et al. Transparent graphene/PEDOT:PSS microelectrodes for electro- and optophysiology. Adv. Mater. Technol. 4, 1800318 (2019).

    Article 

    Google Scholar
     

  • Susloparova, A. et al. Low impedance and highly transparent microelectrode arrays (MEA) for in vitro neuron electrical activity probing. Sens. Actuators B Chem. 327, 128895 (2021).

    Article 

    Google Scholar
     

  • Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood–brain barrier model provides in vivo‐like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

    Article 

    Google Scholar
     

  • Maoz, B. M. et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865–877 (2018).

    Article 

    Google Scholar
     

  • Salmon, I. et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab. Chip 22, 1615–1629 (2022).

    Article 

    Google Scholar
     

  • Zhang, S., Wan, Z. & Kamm, R. D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab. Chip 21, 473–488 (2021).

    Article 

    Google Scholar
     

  • Campisi, M. et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180, 117–129 (2018). This article reports a foundational microfluidic BBB model with self-assembled vasculature highlighting the strong remodelling characteristics of these tissue models.

    Article 

    Google Scholar
     

  • Muoio, V., Persson, P. B. & Sendeski, M. M. The neurovascular unit–concept review. Acta Physiol. 210, 790–798 (2014).

    Article 

    Google Scholar
     

  • Choublier, N. et al. Exposure of human cerebral microvascular endothelial cells hCMEC/D3 to laminar shear stress induces vascular protective responses. Fluids Barriers CNS 19, 41 (2022).

    Article 

    Google Scholar
     

  • Reinitz, A., DeStefano, J., Ye, M., Wong, A. D. & Searson, P. C. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc. Res. 99, 8–18 (2015).

    Article 

    Google Scholar
     

  • Mehta, A. et al. Bio-mimicking brain vasculature to investigate the role of heterogeneous shear stress in regulating barrier integrity. Adv. Biol. 6, e2200152 (2022).

    Article 

    Google Scholar
     

  • DeStefano, J. G., Xu, Z. S., Williams, A. J., Yimam, N. & Searson, P. C. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS 14, 20 (2017).

    Article 

    Google Scholar
     

  • Garcia-Polite, F. et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J. Cereb. Blood Flow. Metab. 37, 2614–2625 (2017).

    Article 

    Google Scholar
     

  • Park, T. E. et al. Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

    Article 

    Google Scholar
     

  • Wevers, N. R. et al. A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15, 23 (2018).

    Article 

    Google Scholar
     

  • Huh, D. et al. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135–2157 (2013).

    Article 

    Google Scholar
     

  • Henry, O. Y. F. et al. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab. Chip 17, 2264–2271 (2017).

    Article 

    Google Scholar
     

  • Matthiesen, I., Voulgaris, D., Nikolakopoulou, P., Winkler, T. E. & Herland, A. Continuous monitoring reveals protective effects of N-acetylcysteine amide on an isogenic microphysiological model of the neurovascular unit. Small 17, e2101785 (2021).

    Article 

    Google Scholar
     

  • Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    Article 

    Google Scholar
     

  • Sances, S. et al. Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development. Stem Cell Rep. 10, 1222–1236 (2018).

    Article 

    Google Scholar
     

  • Vatine, G. D. et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e6 (2019).

    Article 

    Google Scholar
     

  • Graybill, P. M. et al. Ultra-thin and ultra-porous nanofiber networks as a basement-membrane mimic. Lab. Chip 23, 4565–4578 (2023).

    Article 

    Google Scholar
     

  • Ye, M. et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci. Rep. 4, 4681 (2014).

    Article 

    Google Scholar
     

  • Marino, A. et al. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. Small 14, https://doi.org/10.1002/smll.201702959 (2018).


    Google Scholar
     

  • Tricinci, O. et al. A 3D biohybrid real-scale model of the brain cancer microenvironment for advanced in vitro testing. Adv. Mater. Technol. 5, 2000540 (2020).

    Article 

    Google Scholar
     

  • Yildirim, E. et al. Phaseguides as tunable passive microvalves for liquid routing in complex microfluidic networks. Lab. Chip 14, 3334–3340 (2014).

    Article 

    Google Scholar
     

  • Koo, Y., Hawkins, B. T. & Yun, Y. Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening. Sci. Rep. 8, 2841 (2018).

    Article 

    Google Scholar
     

  • Ragelle, H., Goncalves, A., Kustermann, S., Antonetti, D. A. & Jayagopal, A. Organ-on-a-chip technologies for advanced blood-retinal barrier models. J. Ocul. Pharmacol. Ther. 36, 30–41 (2020).

    Article 

    Google Scholar
     

  • Bolognin, S. et al. 3D cultures of Parkinson’s disease‐specific dopaminergic neurons for high content phenotyping and drug testing. Adv. Sci. 6, 1800927 (2019).

    Article 

    Google Scholar
     

  • Park, T. I. H. et al. Routine culture and study of adult human brain cells from neurosurgical specimens. Nat. Protoc. 17, 190–221 (2022).

    Article 

    Google Scholar
     

  • Bernas, M. J. et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat. Protoc. 5, 1265–1272 (2010).

    Article 

    Google Scholar
     

  • Ades, E. W. et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Investig. Dermatol. 99, 683–690 (1992).

    Article 

    Google Scholar
     

  • Daniels, B. P. et al. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier. J. Neurosci. Methods 212, 173–179 (2013).

    Article 

    Google Scholar
     

  • Eigenmann, D. E. et al. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10, 33 (2013).

    Article 

    Google Scholar
     

  • Ohtsuki, S. et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol. Pharm. 10, 289–296 (2013).

    Article 

    Google Scholar
     

  • Roux, F. et al. Regulation of gamma‐glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J. Cell Physiol. 159, 101–113 (1994).

    Article 

    Google Scholar
     

  • Sano, Y. et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J. Cell Physiol. 225, 519–528 (2010).

    Article 

    Google Scholar
     

  • Lippmann, E. S., Al-Ahmad, A., Azarin, S. M., Palecek, S. P. & Shusta, E. V. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci. Rep. 4, 4160 (2014).

    Article 

    Google Scholar
     

  • Katt, M. E., Linville, R. M., Mayo, L. N., Xu, Z. S. & Searson, P. C. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS 15, 7 (2018).

    Article 

    Google Scholar
     

  • Li, Y. et al. Investigation of neurodevelopmental deficits of 22 q11.2 deletion syndrome with a patient-ipsc-derived blood–brain barrier model. Cells 10, 2576 (2021).

    Article 

    Google Scholar
     

  • Casas, B. S. et al. Schizophrenia-derived hiPSC brain microvascular endothelial-like cells show impairments in angiogenesis and blood–brain barrier function. Mol. Psychiatry 27, 3708–3718 (2022).

    Article 

    Google Scholar
     

  • Grifno, G. N. et al. Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells. Sci. Rep. 9, 13957 (2019).

    Article 

    Google Scholar
     

  • Linville, R. M. et al. Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190–191, 24–37 (2019).

    Article 

    Google Scholar
     

  • Lippmann, E. S., Azarin, S. M., Palecek, S. P. & Shusta, E. V. Commentary on human pluripotent stem cell-based blood–brain barrier models. Fluids Barriers CNS 17, 4–9 (2020).

    Article 

    Google Scholar
     

  • Nguyen, J., Lin, Y. Y. & Gerecht, S. The next generation of endothelial differentiation: tissue-specific ECs. Cell Stem Cell 28, 1188–1204 (2021).

    Article 

    Google Scholar
     

  • Floy, M. E., Shabnam, F. & Palecek, S. P. Directed differentiation of human pluripotent stem cells to epicardial-derived fibroblasts. STAR Protoc. 3, 48–50 (2022).

    Article 

    Google Scholar
     

  • Lim, R. G. et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep. 19, 1365–1377 (2017).

    Article 

    Google Scholar
     

  • Hollmann, E. K. et al. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS 14, 9 (2017).

    Article 

    Google Scholar
     

  • Lu, T. M. et al. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc. Natl Acad. Sci. USA 118, e2016950118 (2021).

    Article 

    Google Scholar
     

  • Workman, M. J. & Svendsen, C. N. Recent advances in human iPSC-derived models of the blood-brain barrier. Fluids Barriers CNS 17, 30 (2020).

    Article 

    Google Scholar
     

  • Linville, R. M. et al. Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington’s disease. Fluids Barriers CNS 19, 54 (2022).

    Article 

    Google Scholar
     

  • Krasemann, S. et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep. 17, 307–320 (2022).

    Article 

    Google Scholar
     

  • Lippmann, E. S. et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

    Article 

    Google Scholar
     

  • Hajal, C. et al. Engineered human blood–brain barrier microfluidic model for vascular permeability analyses. Nat. Protoc. 17, 95–128 (2022).

    Article 

    Google Scholar
     

  • Cho, A. N. et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat. Commun. 12, 4730 (2021).

    Article 

    Google Scholar
     

  • Park, J. et al. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab. Chip 15, 141–150 (2015).

    Article 

    Google Scholar
     

  • Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 16, 579–602 (2021).

    Article 

    Google Scholar
     

  • Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    Article 

    Google Scholar
     

  • Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    Article 

    Google Scholar
     

  • Li, N. et al. Patterning neuroepithelial cell sheet via a sustained chemical gradient generated by localized passive diffusion devices. ACS Biomater. Sci. Eng. 7, 1713–1721 (2021).

    Article 

    Google Scholar
     

  • Rifes, P. et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat. Biotechnol. 38, 1265–1273 (2020).

    Article 

    Google Scholar
     

  • Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398.e7 (2017).

    Article 

    Google Scholar
     

  • Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    Article 

    Google Scholar
     

  • Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    Article 

    Google Scholar
     

  • Andersen, J. et al. Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913–1929.e26 (2020).

    Article 

    Google Scholar
     

  • Meng, X. et al. Assembloid CRISPR screens reveal impact of disease genes in human neurodevelopment. Nature 622, 359–366 (2023).

    Article 

    Google Scholar
     

  • Xiang, Y. et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24, 487–497.e7 (2019).

    Article 

    Google Scholar
     

  • Cai, H. et al. Trapping cell spheroids and organoids using digital acoustofluidics. Biofabrication 12, 035025 (2020).

    Article 

    Google Scholar
     

  • Ao, Z. et al. Controllable fusion of human brain organoids using acoustofluidics. Lab. Chip 21, 688–699 (2021).

    Article 

    Google Scholar
     

  • Bonanini, F. et al. In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed. Angiogenesis 25, 455–470 (2022).

    Article 

    Google Scholar
     

  • Obergrussberger, A., Friis, S., Brüggemann, A. & Fertig, N. Automated patch clamp in drug discovery: major breakthroughs and innovation in the last decade. Exp. Opin. Drug Discov. 16, 1–5 (2020).

    Article 

    Google Scholar
     

  • Khan, T. A. et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat. Med. 26, 1888–1898 (2020).

    Article 

    Google Scholar
     

  • Peng, Y. et al. High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp. eLife 8, e48178 (2019).

    Article 

    Google Scholar
     

  • Bell, D. C. & Dallas, M. L. Using automated patch clamp electrophysiology platforms in pain-related ion channel research: insights from industry and academia. Br. J. Pharmacol. 175, 2312–2321 (2018).

    Article 

    Google Scholar
     

  • Chambers, C., Witton, I., Adams, C., Marrington, L. & Kammonen, J. High-throughput screening of NaV1.7 modulators using a giga-seal automated patch clamp instrument. Assay. Drug Dev. Technol. 14, 93–108 (2016).

    Article 

    Google Scholar
     

  • Obergrussberger, A. et al. Automated patch clamp meets high-throughput screening: 384 cells recorded in parallel on a planar patch clamp module. J. Lab. Autom. 21, 779–793 (2016).

    Article 

    Google Scholar
     

  • Semyanov, A., Henneberger, C. & Agarwal, A. Making sense of astrocytic calcium signals — from acquisition to interpretation. Nat. Rev. Neurosci. 21, 551–564 (2020).

    Article 

    Google Scholar
     

  • Sun, X. R. et al. Fast GCaMPs for improved tracking of neuronal activity. Nat. Commun. 4, 2170 (2013).

    Article 

    Google Scholar
     

  • Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    Article 

    Google Scholar
     

  • Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).

    Article 

    Google Scholar
     

  • Klioutchnikov, A. et al. Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nat. Methods 17, 509–513 (2020).

    Article 

    Google Scholar
     

  • Zhao, C. et al. Miniature three-photon microscopy maximized for scattered fluorescence collection. Nat. Methods 20, 617–622 (2023).

    Article 

    Google Scholar
     

  • Klioutchnikov, A. et al. A three-photon head-mounted microscope for imaging all layers of visual cortex in freely moving mice. Nat. Methods 20, 610–616 (2023).

    Article 

    Google Scholar
     

  • Liu, P. & Miller, E. W. Electrophysiology, unplugged: imaging membrane potential with fluorescent indicators. Acc. Chem. Res. 53, 11–19 (2020).

    Article 

    Google Scholar
     

  • Kralj, J. M., Douglass, A. D., Hochbaum, D. R., MacLaurin, D. & Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012).

    Article 

    Google Scholar
     

  • Klimas, A. et al. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat. Commun. 7, 11542 (2016).

    Article 

    Google Scholar
     

  • Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Article 

    Google Scholar
     

  • Emiliani, V., Cohen, A. E., Deisseroth, K. & Häusser, M. All-optical interrogation of neural circuits. J. Neurosci. 35, 13917–13926 (2015).

    Article 

    Google Scholar
     

  • Wysmolek, P. M. et al. A minimal-complexity light-sheet microscope maps network activity in 3D neuronal systems. Sci. Rep. 12, 20420 (2022).

    Article 

    Google Scholar
     

  • Kagan, B. J. et al. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 110, 3952–3969.e8 (2022).

    Article 

    Google Scholar
     

  • Müller, J. et al. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab. Chip 15, 2767–2780 (2015).

    Article 

    Google Scholar
     

  • Yuan, X. et al. Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level. Nat. Commun. 11, 4854 (2020).

    Article 

    Google Scholar
     

  • Ballini, M. et al. Europe PMC funders group europe pmc funders author manuscripts a 1024-channel CMOS microelectrode array with 26, 400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J. Solid-State Circuits 49, 2705–2719 (2017).

    Article 

    Google Scholar
     

  • Emmenegger, V., Obien, M. E. J., Franke, F. & Hierlemann, A. Technologies to study action potential propagation with a focus on HD-MEAs. Front. Cell Neurosci. 13, 159 (2019).

    Article 

    Google Scholar
     

  • Sharf, T. et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat. Commun. 13, 4403 (2022).

    Article 

    Google Scholar
     

  • Ronchi, S. et al. Single-cell electrical stimulation using CMOS-based high-density microelectrode arrays. Front. Neurosci. 13, 208 (2019).

    Article 

    Google Scholar
     

  • Ronchi, S. et al. Electrophysiological phenotype characterization of human iPSC-derived neuronal cell lines by means of high-density microelectrode arrays. Adv. Biol. 5, e2000223 (2021).

    Article 

    Google Scholar
     

  • Suzuki, I. et al. Large-area field potential imaging having single neuron resolution using 236 880 electrodes CMOS-MEA technology. Adv. Sci. 10, e2207732 (2023).

    Article 

    Google Scholar
     

  • Duru, J. et al. Investigation of the input-output relationship of engineered neural networks using high-density microelectrode arrays. Biosens. Bioelectron. 239, 115591 (2023).

    Article 

    Google Scholar
     

  • Kim, E. et al. A neurospheroid-based microrobot for targeted neural connections in a hippocampal slice. Adv. Mater. 35, e2208747 (2023).

    Article 

    Google Scholar
     

  • Kim, T. et al. Predicting in vitro single-neuron firing rates upon pharmacological perturbation using Graph Neural Networks. Front. Neuroinform. 16, 1032538 (2023).

    Article 

    Google Scholar
     

  • Bryson, A. et al. Classification of antiseizure drugs in cultured neuronal networks using multielectrode arrays and unsupervised learning. Epilepsia 63, 1693–1703 (2022).

    Article 

    Google Scholar
     

  • Antonello, P. C. et al. Self-organization of in vitro neuronal assemblies drives to complex network topology. eLife 11, e74921 (2022).

    Article 

    Google Scholar
     

  • Isomura, T., Shimazaki, H. & Friston, K. J. Canonical neural networks perform active inference. Commun. Biol. 5, 55 (2022).

    Article 

    Google Scholar
     

  • Isomura, T. & Friston, K. In vitro neural networks minimise variational free energy. Sci. Rep. 8, 16926 (2018).

    Article 

    Google Scholar
     

  • Isomura, T., Kotani, K., Jimbo, Y. & Friston, K. J. Experimental validation of the free-energy principle with in vitro neural networks. Nat. Commun. 14, 4–6 (2023).

    Article 

    Google Scholar
     

  • Lamberti, M. et al. Maximum entropy models provide functional connectivity estimates in neural networks. Sci. Rep. 12, 9656 (2022).

    Article 

    Google Scholar
     

  • Middya, S. et al. Microelectrode arrays for simultaneous electrophysiology and advanced optical microscopy. Adv. Sci. 8, 2004434 (2021).

    Article 

    Google Scholar
     

  • Bounik, R., Cardes, F., Ulusan, H., Modena, M. M. & Hierlemann, A. Impedance imaging of cells and tissues: design and applications. BME Front. 2022, 1–21 (2022).

    Article 

    Google Scholar
     

  • Thiébaud, P. et al. An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices. Biosens. Bioelectron. 14, 61–65 (1999).

    Article 

    Google Scholar
     

  • Heuschkel, M. O., Fejtl, M., Raggenbass, M., Bertrand, D. & Renaud, P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J. Neurosci. Methods 114, 135–148 (2002).

    Article 

    Google Scholar
     

  • Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article 

    Google Scholar
     

  • Noskovicova, N., Hinz, B. & Pakshir, P. Implant fibrosis and the underappreciated role of myofibroblasts in the foreign body reaction. Cells 10, 1794 (2021).

    Article 

    Google Scholar
     

  • Kozai, T. D. Y. et al. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 37, 25–39 (2015).

    Article 

    Google Scholar
     

  • Guan, S. et al. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation. Nat. Protoc. 18, 1712–1744 (2023).

    Article 

    Google Scholar
     

  • Le Floch, P. et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nat. Nanotechnol. 19, 319–329 (2023).

    Article 

    Google Scholar
     

  • Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article 

    Google Scholar
     

  • Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article 

    Google Scholar
     

  • Cotton, K. Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7, eabf9153 (2021).

    Article 

    Google Scholar
     

  • Soscia, D. A. et al. A flexible 3-dimensional microelectrode array for: In vitro brain models. Lab. Chip 20, 901–911 (2020).

    Article 

    Google Scholar
     

  • Kalmykov, A. et al. Bioelectrical interfaces with cortical spheroids in three-dimensions. J. Neural Eng. 18, https://doi.org/10.1088/1741-2552/abf290 (2021).

    Article 

    Google Scholar
     

  • Kalmykov, A. et al. Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci Adv 5, eaax0729 (2019).

    Article 

    Google Scholar
     

  • Woeppel, K., Yang, Q. & Cui, X. T. Recent advances in neural electrode–tissue interfaces. Curr. Opin. Biomed. Eng. 4, 21–31 (2017).

    Article 

    Google Scholar
     

  • Hernández, D. et al. Culture variabilities of human iPSC-derived cerebral organoids are a major issue for the modelling of phenotypes observed in Alzheimer’s disease. Stem Cell Rev. Rep. 18, 718–731 (2015).

    Article 

    Google Scholar
     

  • Partyka, P. P. et al. Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier. Biomaterials 115, 30–39 (2017).

    Article 

    Google Scholar
     

  • Shin, Y. et al. Blood–brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv. Sci. 6, 1900962 (2019).

    Article 

    Google Scholar
     

  • Fan, Y., Nguyen, D. T., Akay, Y., Xu, F. & Akay, M. Engineering a brain cancer chip for high-throughput drug screening. Sci. Rep. 6, 25062 (2016).

    Article 

    Google Scholar
     

  • Grebenyuk, S. et al. Large-scale perfused tissues via synthetic 3D soft microfluidics. Nat. Commun. 14, 193 (2023).

    Article 

    Google Scholar
     

  • Eichmüller, O. L. & Knoblich, J. A. Human cerebral organoids — a new tool for clinical neurology research. Nat. Rev. Neurol. 18, 661–680 (2022).

    Article 

    Google Scholar
     

  • Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article 

    Google Scholar
     

  • Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    Article 

    Google Scholar
     

  • Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781.e9 (2020).

    Article 

    Google Scholar
     

  • Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article 

    Google Scholar
     

  • Vértesy, Á. et al. Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. EMBO J 41, e111118 (2022).

    Article 

    Google Scholar
     

  • Uzquiano, A. et al. Single-cell multiomics atlas of organoid development uncovers longitudinal molecular programs of cellular diversification of the human cerebral cortex. Cell 185, 3770–3788.e27 (2022).

    Article 

    Google Scholar
     

  • Ning, L. et al. A 3D bioprinted in vitro model of neuroblastoma recapitulates dynamic tumor-endothelial cell interactions contributing to solid tumor aggressive behavior. Adv. Sci. 22, e2200244 (2022).

    Article 

    Google Scholar
     

  • Bischel, L. L., Lee, S.-H. & Beebe, D. J. A practical method for patterning lumens through ECM hydrogels via viscous finger patterning. SLAS Technol. 17, 96–103 (2012).

    Article 

    Google Scholar
     

  • Delannoy, E. et al. Multi-layered human blood vessels-on-chip design using double viscous finger patterning. Biomedicines 10, 797 (2022).

    Article 

    Google Scholar
     

  • Faley, S. L. et al. iPSC-derived brain endothelium exhibits stable, long-term barrier function in perfused hydrogel scaffolds. Stem Cell Rep. 12, 474–487 (2019).

    Article 

    Google Scholar
     

  • Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    Article 

    Google Scholar
     

  • Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    Article 

    Google Scholar
     

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article 

    Google Scholar
     

  • Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    Article 

    Google Scholar
     

  • Dauth, S. et al. Extracellular matrix protein expression is brain region dependent. J. Comp. Neurol. 524, 1309–1336 (2016).

    Article 

    Google Scholar
     

  • Reed, M. J., Damodarasamy, M. & Banks, W. A. The extracellular matrix of the blood–brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease. Tissue Barriers 7, 1651157 (2019).

    Article 

    Google Scholar
     

  • Pantazopoulos, H. et al. Molecular signature of extracellular matrix pathology in schizophrenia. Eur. J. Neurosci. 53, 3960–3987 (2021).

    Article 

    Google Scholar
     

  • Barry, C. et al. Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques. Exp. Biol. Med. 242, 1679–1689 (2017).

    Article 

    Google Scholar
     

  • Ranga, A. et al. Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl Acad. Sci. USA 113, E6831–E6839 (2016).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands. Nat. Commun. 14, 1457 (2023).


    Google Scholar
     

  • Long, K. R. & Huttner, W. B. How the extracellular matrix shapes neural development. Open Biol. 9, 180216 (2019).

    Article 

    Google Scholar
     

  • Hynd, M. R., Frampton, J. P., Dowell-Mesfin, N., Turner, J. N. & Shain, W. Directed cell growth on protein-functionalized hydrogel surfaces. J. Neurosci. Methods 162, 255–263 (2007).

    Article 

    Google Scholar
     

  • George, J. et al. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol. Adv. 42, 107370 (2020).

    Article 

    Google Scholar
     

  • Ho, C. M. B., Ng, S. H., Li, K. H. H. & Yoon, Y. J. 3D printed microfluidics for biological applications. Lab. Chip 15, 3627–3637 (2015).

    Article 

    Google Scholar
     

  • Au, A. K., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016).

    Article 

    Google Scholar
     

  • Akbari, M. & Khademhosseini, A. ll Tissue bioprinting for biology and medicine. Cell 185, 2644–2648 (2022).

    Article 

    Google Scholar
     

  • Hospodiuk, M., Dey, M., Sosnoski, D. & Ozbolat, I. T. The bioink: a comprehensive review on bioprintable materials. Biotechnol. Adv. 35, 217–239 (2017).

    Article 

    Google Scholar
     

  • Bliley, J. M., Shiwarski, D. J. & Feinberg, A. W. 3D-bioprinted human tissue and the path toward clinical translation. Sci. Transl. Med. 14, eabo7047 (2022).

    Article 

    Google Scholar
     

  • Ouyang, L. Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol. 40, 891–902 (2022).

    Article 

    Google Scholar
     

  • Qiu, B. et al. Bioprinting neural systems to model central nervous system diseases. Adv. Funct. Mater. 30, 1910250 (2020).

    Article 

    Google Scholar
     

  • Zhang, Y., Chen, H., Long, X. & Xu, T. Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer’s disease. Bioact. Mater. 11, 192–205 (2022).


    Google Scholar
     

  • Blaeser, A. et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthc. Mater. 5, 326–333 (2016).

    Article 

    Google Scholar
     

  • Nair, K. et al. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4, 1168–1177 (2009).

    Article 

    Google Scholar
     

  • Hölzl, K. et al. Bioink properties before, during and after 3D bioprinting. Biofabrication 8, 032002 (2016).

    Article 

    Google Scholar
     

  • Habib, A., Sathish, V., Mallik, S. & Khoda, B. 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials 11, 454 (2018).

    Article 

    Google Scholar
     

  • Ning, L. et al. Process-induced cell damage: pneumatic versus screw-driven bioprinting. Biofabrication 12, 025011 (2020).

    Article 

    Google Scholar
     

  • Ning, L., Guillemot, A., Zhao, J., Kipouros, G. & Chen, X. Influence of flow behavior of alginate-cell suspensions on cell viability and proliferation. Tissue Eng. Part C Methods 22, 652–662 (2016).

    Article 

    Google Scholar
     

  • Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).

    Article 

    Google Scholar
     

  • Liu, W. et al. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv. Healthc. Mater. 6, https://doi.org/10.1002/adhm.201601451 (2017).

  • Daly, A. C., Davidson, M. D. & Burdick, J. A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 12, 753 (2021).

    Article 

    Google Scholar
     

  • Roth, J. G. et al. Spatially controlled construction of assembloids using bioprinting. Nat. Commun. 14, 4346 (2023).

    Article 

    Google Scholar
     

  • Li, W. et al. iScience Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 26, 106039 (2023).

    Article 

    Google Scholar
     

  • Zandrini, T., Florczak, S., Levato, R. & Ovsianikov, A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 41, 604–614 (2023).

    Article 

    Google Scholar
     

  • Yi, H. G. et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng. 3, 509–519 (2019).

    Article 

    Google Scholar
     

  • Silvani, G. et al. A 3D-bioprinted vascularized glioblastoma-on-a-chip for studying the impact of simulated microgravity as a novel pre-clinical approach in brain tumor therapy. Adv. Ther. 4, 2170033 (2021).

    Article 

    Google Scholar
     

  • Tang, M. et al. Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity. Small 17, e2006050 (2021).

    Article 

    Google Scholar
     

  • Harley, W. S. et al. Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: a comprehensive review. Bioprinting 23, e00147 (2021).

    Article 

    Google Scholar
     

  • Seymour, J. P., Wu, F., Wise, K. D. & Yoon, E. State-of-the-art mems and microsystem tools for brain research. Microsyst. Nanoeng. 3, 16066 (2017).

    Article 

    Google Scholar
     

  • Jiang, Y. & Tian, B. Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 3, 473–490 (2018).

    Article 

    Google Scholar
     

  • Schaumann, E. N. & Tian, B. Biological interfaces, modulation, and sensing with inorganic nano-bioelectronic materials. Small Methods 4, 1900868 (2020).

    Article 

    Google Scholar
     

  • Pettikiriarachchi, J. T. S., Parish, C. L., Shoichet, M. S., Forsythe, J. S. & Nisbet, D. R. Biomaterials for brain tissue engineering. Aust. J. Chem. 63, 1143–1154 (2010).

    Article 

    Google Scholar
     

  • Muller, J. et al. Conferring flexibility and reconfigurability to a 26,400 microelectrode CMOS array for high throughput neural recordings. 2013 Transducers and Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS and EUROSENSORS 2013. 744–747 (2013).

  • HajjHassan, M., Chodavarapu, V. & Musallam, S. NeuroMEMS: neural probe microtechnologies. Sensors 8, 6704–6726 (2008).

    Article 

    Google Scholar
     

  • Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Article 

    Google Scholar
     

  • Heo, D. N. et al. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Mater. Sci. Eng. C 99, 582–590 (2019).

    Article 

    Google Scholar
     

  • Spencer, A. R. et al. Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl. Mater. Interfaces 11, 30518–30533 (2019).

    Article 

    Google Scholar
     

  • Pires, F., Ferreira, Q., Rodrigues, C. A. V., Morgado, J. & Ferreira, F. C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta Gen. Subj. 1850, 1158–1168 (2015).

    Article 

    Google Scholar
     

  • Stavrinidou, E. et al. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013).

    Article 

    Google Scholar
     

  • Guarino, V., Alvarez-Perez, M. A., Borriello, A., Napolitano, T. & Ambrosio, L. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv. Healthc. Mater. 2, 218–227 (2013).

    Article 

    Google Scholar
     

  • Vijayavenkataraman, S. et al. 3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair. Front. Bioeng. Biotechnol. 7, 266 (2019).

    Article 

    Google Scholar
     

  • Liu, X. et al. Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Appl. Mater. Interfaces 9, 14677–14690 (2017).

    Article 

    Google Scholar
     

  • Ye, L. et al. Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity. Adv. Mater. 33, 2102981 (2021).

    Article 

    Google Scholar
     

  • Liao, M. et al. 3D Ti 3C 2T x MXene–Matrigel with electroacoustic stimulation to promote the growth of spiral ganglion neurons. ACS Nano 16, 16744–16756 (2022).

    Article 

    Google Scholar
     

  • Lotfi, R. et al. Engineering photo-cross-linkable MXene-based hydrogels: durable conductive biomaterials for electroactive tissues and interfaces. ACS Biomater. Sci. Eng. 10, 800–813 (2023).

    Article 

    Google Scholar
     

  • Xavier Mendes, A. et al. Enhanced electroactivity, mechanical properties, and printability through the addition of graphene oxide to photo-cross-linkable gelatin methacryloyl hydrogel. ACS Biomater. Sci. Eng. 7, 2279–2295 (2021).

    Article 

    Google Scholar
     

  • Pitsalidis, C. et al. Transistor in a tube: a route to three-dimensional bioelectronics. Sci. Adv. 4, eaat4253 (2018).

    Article 

    Google Scholar
     

  • Cheung, K. M. et al. Phenylalanine monitoring via aptamer-field-effect transistor sensors. ACS Sens. 4, 3308–3317 (2019).

    Article 

    Google Scholar
     

  • Nakatsuka, N., Abendroth, J. M., Yang, K.-A. & Andrews, A. M. Divalent cation dependence enhances dopamine aptamer biosensing. ACS Appl. Mater. Interfaces 13, 9425–9435 (2021).

    Article 

    Google Scholar
     

  • Shui, B. et al. A novel electrochemical aptamer-antibody sandwich assay for the detection of tau-381 in human serum. Analyst 143, 3549–3554 (2018).

    Article 

    Google Scholar
     

  • Dauphin-Ducharme, P. et al. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens. 4, 2832–2837 (2019).

    Article 

    Google Scholar
     

  • Anand, A. et al. Detection of K+ efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS Sens. 2, 69–79 (2017).

    Article 

    Google Scholar
     

  • Santos-Cancel, M., Simpson, L. W., Leach, J. B. & White, R. J. Direct, real-time detection of adenosine triphosphate release from astrocytes in three-dimensional culture using an integrated electrochemical aptamer-based sensor. ACS Chem. Neurosci. 10, 2070–2079 (2019).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Electrochemical dual-aptamer biosensors based on nanostructured multielectrode arrays for the detection of neuronal biomarkers. Nanoscale 12, 16501–16513 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Liang, S. et al. Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nat. Commun. 10, 852 (2019).

    Article 

    Google Scholar
     

  • Kutovyi, Y. et al. Amyloid-beta peptide detection via aptamer-functionalized nanowire sensors exploiting single-trap phenomena. Biosens. Bioelectron. 154, 112053 (2020).

    Article 

    Google Scholar
     

  • Renous, N. et al. Spatial trans-epithelial electrical resistance (S-TEER) integrated in organs-on-chips. Lab. Chip 22, 71–79 (2022).

    Article 

    Google Scholar
     

  • Wei, W., Cardes, F., Hierlemann, A. & Modena, M. M. 3D in vitro blood-brain-barrier model for investigating barrier insults. Adv. Sci. 10, e2205752 (2023).

    Article 

    Google Scholar
     

  • Mantle, J. L., Min, L. & Lee, K. H. Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood-brain barrier model. Mol. Pharm. 13, 4191–4198 (2016).

    Article 

    Google Scholar
     

  • Viswam, V. et al. Impedance spectroscopy and electrophysiological imaging of cells with a high-density CMOS microelectrode array system. IEEE Trans. Biomed. Circuits Syst. 12, 1356–1368 (2018).

    Article 

    Google Scholar
     

  • Nicolas, A. et al. High throughput transepithelial electrical resistance (TEER) measurements on perfused membrane-free epithelia. Lab. Chip 21, 1676–1685 (2021).

    Article 

    Google Scholar
     

  • Riahi, R. et al. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci. Rep. 6, 24598 (2016).

    Article 

    Google Scholar
     

  • Dabaghi, M. et al. PHAIR: a biosensor for pH measurement in air–liquid interface cell culture. Sci. Rep. 11, 3477 (2021).

    Article 

    Google Scholar
     

  • Weltin, A. et al. Accessing 3D microtissue metabolism: lactate and oxygen monitoring in hepatocyte spheroids. Biosens. Bioelectron. 87, 941–948 (2017).

    Article 

    Google Scholar
     

  • Kim, J. et al. Manufactured tissue-to-tissue barrier chip for modeling the human blood-brain barrier and regulation of cellular trafficking. Lab. Chip 23, 2990–3001 (2023).

    Article 

    Google Scholar
     

  • Piergiovanni, M., Leite, S. B., Corvi, R. & Whelan, M. Standardisation needs for organ on chip devices. Lab. Chip 21, 2857–2868 (2021).

    Article 

    Google Scholar
     

  • Reyes, D. R. et al. From animal testing to in vitro systems: advancing standardization in microphysiological systems. Lab. Chip 24, 1076–1087 (2024).

    Article 

    Google Scholar
     

  • Ham, O., Jin, Y. B., Kim, J. & Lee, M. O. Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem. Biophys. Res. Commun. 521, 84–90 (2020).

    Article 

    Google Scholar
     

  • Wurmser, A. E. et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004).

    Article 

    Google Scholar
     

  • Li, T. L. et al. Stretchable mesh microelectronics for the biointegration and stimulation of human neural organoids. Biomaterials 290, 121825 (2022).

    Article 

    Google Scholar
     

  • Ahn, Y., Lee, H., Lee, D. & Lee, Y. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl. Mater. Interfaces 6, 18401–18407 (2014).

    Article 

    Google Scholar
     

  • Ko, Y. et al. A simple silver nanowire patterning method based on poly(ethylene glycol) photolithography and its application for soft electronics. Sci. Rep. 7, 2282 (2017).

    Article 

    Google Scholar
     

  • Atty, S. A. et al. Simultaneous voltammetric detection of anti-depressant drug, sertraline HCl and paracetamol in biological fluid at CNT-cesium modified electrode in micellar media. Microchem. J. 159, 105524 (2020).

    Article 

    Google Scholar
     

  • Incaviglia, I. et al. An approach for the real-time quantification of cytosolic protein–protein interactions in living cells. ACS Sens. 6, 1572–1582 (2021).

    Article 

    Google Scholar
     

  • Dornhof, J. et al. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab. Chip 22, 225–239 (2022).

    Article 

    Google Scholar
     

  • Misun, P. M., Rothe, J., Schmid, Y. R. F., Hierlemann, A. & Frey, O. Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks. Microsyst. Nanoeng. 2, 16022 (2016).

    Article 

    Google Scholar
     

  • Sciurti, E. et al. TEER and ion selective transwell-integrated sensors system for Caco-2 cell model. Micromachines 14, 496 (2023).

    Article 

    Google Scholar
     

  • Su, S.-H. et al. A tissue chip with integrated digital immunosensors: in situ brain endothelial barrier cytokine secretion monitoring. Biosens. Bioelectron. 224, 115030 (2023).

    Article 

    Google Scholar
     

  • Wise, K. D., Angell, J. B. & Starr, A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. BME-17, 238–247 (1970).

    Article 

    Google Scholar
     

  • Wise, K. D. & Angell, J. B. A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans. Biomed. Eng. BME-22, 212–219 (1975).

    Article 

    Google Scholar
     

  • Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article 

    Google Scholar
     

  • Neher, E., Sakmann, B. & Steinbach, J. H. The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 375, 219–228 (1978).

    Article 

    Google Scholar
     

  • Sigworth, F. & Neher, E. Single Na+ channel currents observed in cultured rat muscle cells. Nature 287, 447–449 (1980).

    Article 

    Google Scholar
     

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article 

    Google Scholar
     

  • Maynard, E. M., Nordhausen, C. T. & Normann, R. A. The Utah Intracortical Electrode Array: A recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102, 228–239 (1997).

    Article 

    Google Scholar
     

  • Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38, 758–768 (1991).

    Article 

    Google Scholar
     

  • Nordhausen, C. T., Maynard, E. M. & Normann, R. A. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726, 129–140 (1996).

    Article 

    Google Scholar
     

  • Stark, E., Koos, T. & Buzsáki, G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108, 349–363 (2012).

    Article 

    Google Scholar
     

  • Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    Article 

    Google Scholar
     

  • Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    Article 

    Google Scholar
     

  • Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358, 369–372 (2017).

    Article 

    Google Scholar
     

  • Loewa, A., Feng, J. J. & Hedtrich, S. Human disease models in drug development. Nat. Rev. Bioeng. 1, 545–559 (2023).

    Article 

    Google Scholar