Encapsulated islet transplantation – Nature Reviews Bioengineering

  • Foster, N. C. et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol. Ther. 21, 66–72 (2019).


    Google Scholar
     

  • Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).


    Google Scholar
     

  • Shapiro, A. M. J. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).


    Google Scholar
     

  • Ryan, E. A. et al. Five-year follow-up after clinical islet transplantation. Diabetes 54, 2060–2069 (2005).


    Google Scholar
     

  • Berney, T. et al. A worldwide survey of activities and practices in clinical islet of Langerhans transplantation. Transpl. Int. 35, 10507 (2022).


    Google Scholar
     

  • Stabler, C. L. & Russ, H. A. Regulatory approval of islet transplantation for treatment of type 1 diabetes: implications and what is on the horizon. Mol. Ther. 31, 3107–3108 (2023).


    Google Scholar
     

  • Cnop, M. et al. Longevity of human islet α- and β-cells. Diabetes Obes. Metab. 13, 39–46 (2011).


    Google Scholar
     

  • Carlsson, P.-O. et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am. J. Transplant. 18, 1735–1744 (2018).


    Google Scholar
     

  • Shapiro, A. M. J. et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep. Med. 2, 100466 (2021).


    Google Scholar
     

  • Basta, G. et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts. Diabetes Care 34, 2406–2409 (2011).


    Google Scholar
     

  • Li, Y. et al. In vitro platform establishes antigen-specific CD8+ T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 256, 120182 (2020).


    Google Scholar
     

  • Jones, K. S., Sefton, M. V. & Gorczynski, R. M. In vivo recognition by the host adaptive immune system of microencapsulated xenogeneic cells. Transplantation 78, 1454–1462 (2004).


    Google Scholar
     

  • Kobayashi, T. et al. Immune mechanisms associated with the rejection of encapsulated neonatal porcine islet xenografts. Xenotransplantation 13, 547–559 (2006).


    Google Scholar
     

  • Duvivier-Kali, V. F., Omer, A., Lopez-Avalos, M. D., O’Neil, J. J. & Weir, G. C. Survival of microencapsulated adult pig islets in mice in spite of an antibody response. Am. J. Transplant. 4, 1991–2000 (2004).


    Google Scholar
     

  • Kharbikar, B. N., Chendke, G. S. & Desai, T. A. Modulating the foreign body response of implants for diabetes treatment. Adv. Drug. Deliv. Rev. 174, 87–113 (2021).


    Google Scholar
     

  • Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).


    Google Scholar
     

  • Chang, T. M. S. Semipermeable microcapsules. Science 146, 524–525 (1964).


    Google Scholar
     

  • Lim, F. & Sun Anthony, M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–910 (1980).


    Google Scholar
     

  • Lee, S. J., Lee, J. B., Park, Y.-W. & Lee, D. Y. In Biomimetic Medical Materials: from Nanotechnology to 3D Bioprinting (ed. Noh, I.) 355–374 (Springer Singapore, 2018).

  • Kizilel, S., Garfinkel, M. & Opara, E. The bioartificial pancreas: progress and challenges. Diabetes Technol. Ther. 7, 968–985 (2005).


    Google Scholar
     

  • Sakata, N. et al. MRI assessment of ischemic liver after intraportal islet transplantation. Transplantation 87, 825–830 (2009).


    Google Scholar
     

  • Chen, C. et al. Improved intraportal islet transplantation outcome by systemic IKK-β inhibition: NF-κB activity in pancreatic islets depends on oxygen availability. Am. J. Transplant. 11, 215–224 (2011).


    Google Scholar
     

  • Olsson, R., Olerud, J., Pettersson, U. & Carlsson, P. O. Increased numbers of low-oxygenated pancreatic islets after intraportal islet transplantation. Diabetes 60, 2350–2353 (2011).


    Google Scholar
     

  • Shapiro, A. M. J., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017).


    Google Scholar
     

  • Qi, M. et al. A recommended laparoscopic procedure for implantation of microcapsules in the peritoneal cavity of non-human primates. J. Surg. Res. 168, e117–e123 (2011).


    Google Scholar
     

  • Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).


    Google Scholar
     

  • Damyar, K., Farahmand, V., Whaley, D., Alexander, M. & Lakey, J. R. T. An overview of current advancements in pancreatic islet transplantation into the omentum. Islets 13, 115–120 (2021).


    Google Scholar
     

  • Berman, D. M. et al. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am. J. Transplant. 9, 91–104 (2008).


    Google Scholar
     

  • Carlsson, P.-O., Palm, F., Andersson, A. & Liss, P. Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 50, 489–495 (2001).


    Google Scholar
     

  • Cao, R., Avgoustiniatos, E., Papas, K., Vos, P. & Lakey, J. R. T. Mathematical predictions of oxygen availability in micro‐ and macro‐encapsulated human and porcine pancreatic islets. J. Biomed. Mater. Res. B 108, 343–352 (2019).


    Google Scholar
     

  • Korsgren, O. Islet encapsulation: physiological possibilities and limitations. Diabetes 66, 1748–1754 (2017).


    Google Scholar
     

  • Gilla, R. G. Antigen presentation pathways for immunity to islet transplants: relevance to immunoisolation. Ann. NY Acad. Sci. 875, 255–260 (1999).


    Google Scholar
     

  • Gray, D. W. R. An overview of the immune system with specific reference to membrane encapsulation and islet transplantation. Ann. NY Acad. Sci. 944, 226–239 (2001).


    Google Scholar
     

  • Brauker, J., Martinson, L. A., Young, S. K. & Johnson, R. C. Local inflammatory response around diffusion chambers containing xenografts. Transplantation 61, 1671–1677 (1996).


    Google Scholar
     

  • Kumagai-Braesch, M. et al. The TheraCyte™ device protects against islet allograft rejection in immunized hosts. Cell Transpl. 22, 1137–1146 (2013).


    Google Scholar
     

  • Loudovaris, T., Mandel, T. E. & Charlton, B. Cd4+ T cell mediated destruction of xenografts within cell-impermeable membranes in the absence of Cd8+ T cells and B cells. Transplantation 61, 1678–1684 (1996).


    Google Scholar
     

  • Rayat, G. R. et al. The degree of phylogenetic disparity of islet grafts dictates the reliance on indirect CD4 T-cell antigen recognition for rejection. Diabetes 52, 1433–1440 (2003).


    Google Scholar
     

  • Gray, D. W. R. Encapsulated islet cells: the role of direct and indirect presentation and the relevance to xenotransplantation and autoimmune recurrence. Br. Med. Bull. 53, 777–788 (1997).


    Google Scholar
     

  • O’Shea, G. M., Goosen, M. F. A. & Sun, A. M. Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim. Biophys. Acta 804, 133–136 (1984).


    Google Scholar
     

  • Kollmer, M., Appel, A. A., Somo, S. I. & Brey, E. M. Long-term function of alginate-encapsulated islets. Tissue Eng. B 22, 34–46 (2016).


    Google Scholar
     

  • Ching, S. H., Bansal, N. & Bhandari, B. Alginate gel particles — a review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 57, 1133–1152 (2015).


    Google Scholar
     

  • Dhamecha, D., Movsas, R., Sano, U. & Menon, J. U. Applications of alginate microspheres in therapeutics delivery and cell culture: past, present and future. Int. J. Pharm. 569, 118627 (2019).


    Google Scholar
     

  • King, A., Lau, J., Nordin, A., Sandler, S. & Andersson, A. The effect of capsule composition in the reversal of hyperglycemia in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol. Ther. 5, 653–663 (2003).


    Google Scholar
     

  • Clayton, H. A., London, N. J. M., Colloby, P. S., Bell, P. R. F. & James, R. F. L. The effect of capsule composition on the biocompatibility of alginate-poly-1-lysine capsules. J. Microencapsul. 8, 221–233 (2008).


    Google Scholar
     

  • King, A., Sandler, S. & Andersson, A. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res. 57, 374–383 (2001).


    Google Scholar
     

  • Thu, B. et al. Alginate polycation microcapsules. Biomaterials 17, 1031–1040 (1996).


    Google Scholar
     

  • Strand, B. L. et al. Poly-l-lysine induces fibrosis on alginate microcapsules via the induction of cytokines. Cell Transpl. 10, 263–275 (2017).


    Google Scholar
     

  • Sawhney, A. S., Pathak, C. P. & Hubbell, J. A. Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnol. Bioeng. 44, 383–386 (1994).


    Google Scholar
     

  • Cruise, G. M., Hegre, O. D., Scharp, D. S. & Hubbell, J. A. A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol. Bioeng. 57, 655–665 (1998).


    Google Scholar
     

  • Scharp, D. W. & Marchetti, P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv. Drug. Del. Rev. 67-–68, 35–73 (2014).


    Google Scholar
     

  • Teramura, Y. & Iwata, H. Bioartificial pancreas: microencapsulation and conformal coating of islet of Langerhans. Adv. Drug. Del. Rev. 62, 827–840 (2010).


    Google Scholar
     

  • Zhi, Z.-L., Liu, B., Jones, P. M. & Pickup, J. C. Polysaccharide multilayer nanoencapsulation of insulin-producing β-cells grown as pseudoislets for potential cellular delivery of insulin. Biomacromolecules 11, 610–616 (2010).


    Google Scholar
     

  • Zhi, Z. L., Kerby, A., King, A. J. F., Jones, P. M. & Pickup, J. C. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia 55, 1081–1090 (2012).


    Google Scholar
     

  • Bhaiji, T., Zhi, Z.-L. & Pickup, J. C. Improving cellular function and immune protection via layer-by-layer nanocoating of pancreatic islet β-cell spheroids cocultured with mesenchymal stem cells. J. Biomed. Mater. Res. A 100A, 1628–1636 (2012).


    Google Scholar
     

  • Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121–1131 (2003).


    Google Scholar
     

  • Chanana, M. et al. Interaction of polyelectrolytes and their composites with living cells. Nano Lett. 5, 2605–2612 (2005).


    Google Scholar
     

  • Teramura, Y. & Iwata, H. Cell surface modification with polymers for biomedical studies. Soft Matter. 6, 1081–1091 (2010).


    Google Scholar
     

  • Song, S. & Roy, S. Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: cells, biomaterials, and devices. Biotechnol. Bioeng. 113, 1381–1402 (2016).


    Google Scholar
     

  • Brauker, J. H. et al. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29, 1517–1524 (1995).


    Google Scholar
     

  • Faleo, G., Lee, K., Nguyen, V. & Tang, Q. Assessment of immune isolation of allogeneic mouse pancreatic progenitor cells by a macroencapsulation device. Transplantation 100, 1211–1218 (2016).


    Google Scholar
     

  • Agulnick, A. D. et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cell Transl. Med. 4, 1214–1222 (2015).


    Google Scholar
     

  • Pullen, L. C. Stem cell-derived pancreatic progenitor cells have now been transplanted into patients: report from IPITA 2018. Am. J. Transplant. 18, 1581–1582 (2018).


    Google Scholar
     

  • Henry, R. R. et al. Initial clinical evaluation of VC-01TM combination product — a stem cell-derived islet replacement for type 1 diabetes (T1D). Diabetes 67 (Suppl. 1), 138-OR (2018).

  • ClinicalTrials.gov A safety, tolerability, and efficacy study of VC-01™ combination product in subjects with type I diabetes mellitus. US National Library of Medicine https://clinicaltrials.gov/ct2/show/results/NCT02239354 (2022).

  • ClinicalTrials.gov A study to evaluate safety, engraftment, and efficacy of VC-01 in subjects with T1 diabetes mellitus (VC01-103). US National Library of Medicine https://classic.clinicaltrials.gov/ct2/show/NCT04678557 (2019).

  • Maki, T. et al. Successful treatment of diabetes with the biohybrid artificial pancreas in dogs. Transplantation 51, 43–50 (1991).


    Google Scholar
     

  • Sullivan, S. et al. Biohybrid artificial pancreas: long-term implantation studies in diabetic, pancreatectomized dogs. Science 252, 718–721 (1991).


    Google Scholar
     

  • Maki, T. et al. Treatment of diabetes by xenogeneic islets without immunosuppression: use of a vascularized bioartificial pancreas. Diabetes 45, 342–347 (1996).


    Google Scholar
     

  • Yang, K. et al. A therapeutic convection-enhanced macroencapsulation device for enhancing β cell viability and insulin secretion. Proc. Natl Acad. Sci. USA 118, e2101258118 (2021).


    Google Scholar
     

  • Oppler, S. H. et al. A bioengineered artificial interstitium supports long-term islet xenograft survival in nonhuman primates without immunosuppression. Sci. Adv. 10, eadi4919 (2024).


    Google Scholar
     

  • Hilburger, C. E., Rosenwasser, M. J. & Delcassian, D. The type 1 diabetes immune niche: immunomodulatory biomaterial design considerations for beta cell transplant therapies. J. Immunol. Regen. Med. 17, 100063 (2022).


    Google Scholar
     

  • Gibly, R. F. et al. Advancing islet transplantation: from engraftment to the immune response. Diabetologia 54, 2494–2505 (2011).


    Google Scholar
     

  • Chandorkar, Y., Ravikumar, K. & Basu, B. The foreign body response demystified. ACS Biomater. Sci. Eng. 5, 19–44 (2018).


    Google Scholar
     

  • Mariani, E., Lisignoli, G., Borzì, R. M. & Pulsatelli, L. Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 20, 636 (2019).


    Google Scholar
     

  • Rafael, E., Wernerson, A., Arner, P., Wu, G. S. & Tibell, A. In vivo evaluation of glucose permeability of an immunoisolation device intended for islet transplantation: a novel application of the microdialysis technique. Cell Transpl. 8, 317–326 (1999).


    Google Scholar
     

  • Matsumoto, S. et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant. Proc. 46, 1992–1995 (2014).


    Google Scholar
     

  • Matsumoto, S., Abalovich, A., Wechsler, C., Wynyard, S. & Elliott, R. B. Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. eBioMedicine 12, 255–262 (2016).


    Google Scholar
     

  • Morozov, V. A. et al. No PERV transmission during a clinical trial of pig islet cell transplantation. Virus Res. 227, 34–40 (2017).


    Google Scholar
     

  • Elliott, R. B. et al. Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys. Transplant. Proc. 37, 466–469 (2005).


    Google Scholar
     

  • Elliott, R. B. et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant. Proc. 37, 3505–3508 (2005).


    Google Scholar
     

  • Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).


    Google Scholar
     

  • Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016).


    Google Scholar
     

  • Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).


    Google Scholar
     

  • Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived β cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).


    Google Scholar
     

  • Bose, S. et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat. Biomed. Eng. 4, 814–826 (2020).


    Google Scholar
     

  • Liu, Q. et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat. Commun. 10, 5262 (2019).


    Google Scholar
     

  • Liu, W. et al. A safe, fibrosis-mitigating, and scalable encapsulation device supports long-term function of insulin-producing cells. Small 18, e2104899 (2022).


    Google Scholar
     

  • Liu, Q. et al. A zwitterionic polyurethane nanoporous device with low foreign‐body response for islet encapsulation. Adv. Mater. 33, e2102852 (2021).


    Google Scholar
     

  • Chen, T. et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am. J. Transplant. 15, 618–627 (2015).


    Google Scholar
     

  • Alagpulinsa, D. A. et al. Alginate‐microencapsulation of human stem cell-derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transplant. 197, 1930–1940 (2019).


    Google Scholar
     

  • Sremac, M. et al. Preliminary studies of the impact of CXCL12 on the foreign body reaction to pancreatic islets microencapsulated in alginate in nonhuman primates. Transplant. Direct 5, e447 (2019).


    Google Scholar
     

  • Su, J., Hu, B.-H., Lowe, W. L., Kaufman, D. B. & Messersmith, P. B. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31, 308–314 (2010).


    Google Scholar
     

  • Lin, C.-C., Metters, A. T. & Anseth, K. S. Functional PEG–peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFα. Biomaterials 30, 4907–4914 (2009).


    Google Scholar
     

  • Kuppan, P. et al. Co‐localized immune protection using dexamethasone‐eluting micelles in a murine islet allograft model. Am. J. Transplant. 20, 714–725 (2019).


    Google Scholar
     

  • Bünger, C. M. et al. Deletion of the tissue response against alginate-PLL capsules by temporary release of co-encapsulated steroids. Biomaterials 26, 2353–2360 (2005).


    Google Scholar
     

  • Jiang, K. et al. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 114, 71–81 (2017).


    Google Scholar
     

  • Weaver, J. D. et al. Controlled release of dexamethasone from organosilicone constructs for local modulation of inflammation in islet transplantation. Tissue Eng. A 21, 2250–2261 (2015).


    Google Scholar
     

  • Primavera, R. et al. Enhancing islet transplantation using a biocompatible collagen-PDMS bioscaffold enriched with dexamethasone-microplates. Biofabrication 13, 035011 (2021).


    Google Scholar
     

  • Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: recent advances and applications. Adv. Drug. Del. Rev. 144, 148–161 (2019).


    Google Scholar
     

  • Ranta, F. et al. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 55, 1380–1390 (2006).


    Google Scholar
     

  • Bocca, N. et al. Soft corticosteroids for local immunosuppression: exploring the possibility for the use of loteprednol etabonate for islet transplantation. Pharmazie 63, 226–232 (2008).


    Google Scholar
     

  • Patil, S. D., Papadmitrakopoulos, F. & Burgess, D. J. Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J. Control. Rel. 117, 68–79 (2007).


    Google Scholar
     

  • Vaithilingam, V. et al. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted. Sci. Rep. 7, 10059 (2017).

  • Jacobson, S., Kumagai-Braesch, M., Tibell, A., Svensson, M. & Flodström-Tullberg, M. Co-transplantation of stromal cells interferes with the rejection of allogeneic islet grafts. Ann. NY Acad. Sci. 1150, 213–216 (2008).


    Google Scholar
     

  • Prud’homme, G. J. Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab. Invest. 87, 1077–1091 (2007).


    Google Scholar
     

  • Ding, Y. et al. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58, 1797–1806 (2009).


    Google Scholar
     

  • Wu, H., Wen, D. & Mahato, R. I. Third-party mesenchymal stem cells improved human islet transplantation in a humanized diabetic mouse model. Mol. Ther. 21, 1778–1786 (2013).


    Google Scholar
     

  • Berman, D. M. et al. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59, 2558–2568 (2010).


    Google Scholar
     

  • Wang, X. et al. Engineered immunomodulatory accessory cells improve experimental allogeneic islet transplantation without immunosuppression. Sci. Adv. 8, eabn0071 (2022).


    Google Scholar
     

  • An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl Acad. Sci. USA 115, E263–E272 (2018).


    Google Scholar
     

  • An, D. et al. An atmosphere‐breathing refillable biphasic device for cell replacement therapy. Adv. Mater. 31, e1905135 (2019).


    Google Scholar
     

  • Ramzy, A. et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 28, 2047–2061 e2045 (2021).


    Google Scholar
     

  • Keymeulen, B. et al. Encapsulated stem cell-derived β cells exert glucose control in patients with type 1 diabetes. Nat. Biotechnol. 10.1038/s41587-023-02055-5 (2023).

  • Pepper, A. R. et al. Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation 99, 2294–2300 (2015).


    Google Scholar
     

  • Bachul, P. et al. 307.5: Modified approach allowed for improved islet allotransplantation into pre-vascularized Sernova Cell Pouch™ device — preliminary results of the phase I/II clinical trial at University of Chicago. Transplantation 105 (12S1), S2 (2021).


    Google Scholar
     

  • Paez-Mayorga, J. et al. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat. Commun. 13, 7951 (2022).


    Google Scholar
     

  • Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).


    Google Scholar
     

  • ClinicalTrials.gov An open-label, FIH study evaluating the safety, tolerability, and efficacy of VCTX211 combination product in subjects with T1D. US National Library of Medicine https://classic.clinicaltrials.gov/ct2/show/NCT05565248 (2022).

  • Reichman, T. W. et al. 836-P: glucose-dependent insulin production and insulin-independence in type 1 diabetes from stem cell-derived, fully differentiated islet cells — updated data from the VX-880 clinical trial. Diabetes 72, 836–83 (2023).


    Google Scholar
     

  • Hogrebe, N. J., Ishahak, M. & Millman, J. R. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell 30, 530–548 (2023).


    Google Scholar
     

  • ClinicalTrials.gov A safety, tolerability, and efficacy study of VX-264 in participants with type 1 diabetes. US National Library of Medicine https://classic.clinicaltrials.gov/ct2/show/NCT05791201 (2023).

  • Cai, E. P. et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat. Metab. 2, 934–945 (2020).


    Google Scholar
     

  • Lim, D. et al. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat. Commun. 11, 4043 (2020).


    Google Scholar
     

  • Gerace, D. et al. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep. Med. 4, 100879 (2023).


    Google Scholar
     

  • Yoshihara, E. et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606–611 (2020).


    Google Scholar
     

  • Davies, B. The technical risks of human gene editing. Hum. Reprod. 34, 2104–2111 (2019).


    Google Scholar
     

  • Safley, S. A. et al. Inhibition of cellular immune responses to encapsulated porcine islet xenografts by simultaneous blockade of two different costimulatory pathways. Transplantation 79, 409–418 (2005).


    Google Scholar
     

  • Cui, H. et al. Long-term metabolic control of autoimmune diabetes in spontaneously diabetic nonobese diabetic mice by nonvascularized microencapsulated adult porcine islets. Transplantation 88, 160–169 (2009).


    Google Scholar
     

  • Lei, J. et al. FasL microgels induce immune acceptance of islet allografts in nonhuman primates. Sci. Adv. 8, eabm9881 (2022).


    Google Scholar
     

  • Headen, D. M. et al. Local immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17, 732–739 (2018).


    Google Scholar
     

  • Shrestha, P. et al. Immune checkpoint CD47 molecule engineered islets mitigate instant blood‐mediated inflammatory reaction and show improved engraftment following intraportal transplantation. Am. J. Transplant. 20, 2703–2714 (2020).


    Google Scholar
     

  • Batra, L. et al. Localized immunomodulation with PD-L1 results in sustained survival and function of allogeneic islets without chronic immunosuppression. J. Immunol. 204, 2840–2851 (2020).


    Google Scholar
     

  • Wu, D. C. et al. Ex vivo expanded human regulatory T cells can prolong survival of a human islet allograft in a humanized mouse model. Transplantation 96, 707–716 (2013).


    Google Scholar
     

  • Yi, S. et al. Adoptive transfer with in vitro expanded human regulatory t cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice. Diabetes 61, 1180–1191 (2012).


    Google Scholar
     

  • Putnam, A. L. et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58, 652–662 (2009).


    Google Scholar
     

  • Krzystyniak, A., Gołąb, K., Witkowski, P. & Trzonkowski, P. Islet cell transplant and the incorporation of Tregs. Curr. Opin. Organ. Transplant. 19, 610–615 (2014).


    Google Scholar
     

  • Liu, C. et al. B lymphocyte–directed immunotherapy promotes long-term islet allograft survival in nonhuman primates. Nat. Med. 13, 1295–1298 (2007).


    Google Scholar
     

  • Oura, T. et al. Kidney versus islet allograft survival after induction of mixed chimerism with combined donor bone marrow transplantation. Cell Transpl. 25, 1331–1341 (2016).


    Google Scholar
     

  • Singh, A. et al. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat. Commun. 10, 3495 (2019).


    Google Scholar
     

  • Jansson, L. & Carlsson, P. O. Graft vascular function after transplantation of pancreatic islets. Diabetologia 45, 749–763 (2002).


    Google Scholar
     

  • Jansson, L. et al. Pancreatic islet blood flow and its measurement. Upsala J. Med. Sci. 121, 81–95 (2016).


    Google Scholar
     

  • Davalli, A. M. et al. Vulnerability of islets in the immediate posttransplantation period: dynamic changes in structure and function. Diabetes 45, 1161–1167 (1996).


    Google Scholar
     

  • Bowers, D. T., Song, W., Wang, L. H. & Ma, M. Engineering the vasculature for islet transplantation. Acta Biomater. 95, 131–151 (2019).


    Google Scholar
     

  • De Vos, P. et al. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 48, 1381–1388 (1999).


    Google Scholar
     

  • Citro, A. et al. Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat. Commun. 14, 878 (2023).


    Google Scholar
     

  • Citro, A. et al. Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials 199, 40–51 (2019).


    Google Scholar
     

  • Wassmer, C. H. et al. Bio-engineering of pre-vascularized islet organoids for the treatment of type 1 diabetes. Transpl. Int. 35, 10214 (2021).


    Google Scholar
     

  • Nalbach, L. et al. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol. Med. 13, e12616 (2021).


    Google Scholar
     

  • Chao, X. et al. Comparative study of two common in vitro models for the pancreatic islet with MIN6. Tissue Eng. Regen. Med. 20, 127–141 (2023).


    Google Scholar
     

  • Padera, R. F. & Colton, C. K. Time course of membrane microarchitecture-driven neovascularization. Biomaterials 17, 277–284 (1996).


    Google Scholar
     

  • Sörenby, A., Rafael, E., Tibell, A. & Wernerson, A. Improved histological evaluation of vascularity around an immunoisolation device by correlating number of vascular profiles to glucose exchange. Cell Transpl. 13, 713–720 (2017).


    Google Scholar
     

  • rafael, e, wernerson, a, arner, P. & Tibell, A. In vivo studies on insulin permeability of an immunoisolation device intended for islet transplantation using the microdialysis technique. Eur. Surg. Res. 31, 249–258 (1999).


    Google Scholar
     

  • Rafael, E., Gazelius, B., Wu, G. S. & Tibell, A. Longitudinal studies on the microcirculation around the TheraCyte™ immunoisolation device, using the laser Doppler technique. Cell Transpl. 9, 107–113 (2000).


    Google Scholar
     

  • Rafael, E., Wu, G. S., Hultenby, K., Tibell, A. & Wernerson, A. Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transpl. 12, 407–412 (2003).


    Google Scholar
     

  • Sörenby, A. K. et al. Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation — studies in a rodent model. Transplantation 86, 364–366 (2008).


    Google Scholar
     

  • Magisson, J. et al. Safety and function of a new pre-vascularized bioartificial pancreas in an allogeneic rat model. J. Tissue Eng. 11, 2041731420924818 (2020).


    Google Scholar
     

  • Pepper, A. R. et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33, 518–523 (2015).


    Google Scholar
     

  • Levey, R. E. et al. Assessing the effects of VEGF releasing microspheres on the angiogenic and foreign body response to a 3D printed silicone-based macroencapsulation device. Pharmaceutics 13, 2077 (2021).


    Google Scholar
     

  • Weaver, J. D. et al. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation. Biomaterials 172, 54–65 (2018).


    Google Scholar
     

  • Weaver, J. D. et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 3, e1700184 (2017).


    Google Scholar
     

  • Kakkar, A. et al. Current status of stem cell treatment for type I diabetes mellitus. Tissue. Eng. Regen. Med. 15, 699–709 (2018).


    Google Scholar
     

  • Figliuzzi, M. et al. Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant. Proc. 41, 1797–1800 (2009).


    Google Scholar
     

  • Ito, T. et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89, 1438–1445 (2010).


    Google Scholar
     

  • Rackham, C. L. et al. Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia 54, 1127–1135 (2011).


    Google Scholar
     

  • Park, K.-S. et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 89, 509–517 (2010).


    Google Scholar
     

  • Rackham, C. L., Dhadda, P. K., Le Lay, A. M., King, A. J. F. & Jones, P. M. Preculturing islets with adipose-derived mesenchymal stromal cells is an effective strategy for improving transplantation efficiency at the clinically preferred intraportal site. Cell Med. 7, 37–47 (2014).


    Google Scholar
     

  • de Souza, B. M. et al. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis. Islets 9, 30–42 (2017).


    Google Scholar
     

  • Rackham, C. L. et al. Pre-culturing islets with mesenchymal stromal cells using a direct contact configuration is beneficial for transplantation outcome in diabetic mice. Cytotherapy 15, 449–459 (2013).


    Google Scholar
     

  • Sakata, N., Chan, N. K., Chrisler, J., Obenaus, A. & Hathout, E. Bone marrow cell cotransplantation with islets improves their vascularization and function. Transplantation 89, 686–693 (2010).


    Google Scholar
     

  • McGuigan, A. P. & Sefton, M. V. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl Acad. Sci. USA 103, 11461–11466 (2006).


    Google Scholar
     

  • Vlahos, A. E., Cober, N. & Sefton, M. V. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc. Natl Acad. Sci. USA 114, 9337–9342 (2017).


    Google Scholar
     

  • Song, W. et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10, 4602 (2019).


    Google Scholar
     

  • Komatsu, H., Kandeel, F. & Mullen, Y. Impact of oxygen on pancreatic islet survival. Pancreas 47, 533–543 (2018).


    Google Scholar
     

  • Carlsson, P. O., Liss, P., Andersson, A. & Jansson, L. Measurements of oxygen tension in native and transplanted rat pancreatic islets. Diabetes 47, 1027–1032 (1998).


    Google Scholar
     

  • Vériter, S., Gianello, P. & Dufrane, D. Bioengineered sites for islet cell transplantation. Curr. Diab. Rep. 13, 745–755 (2013).


    Google Scholar
     

  • Papas, K. K., De Leon, H., Suszynski, T. M. & Johnson, R. C. Oxygenation strategies for encapsulated islet and beta cell transplants. Adv. Drug. Del. Rev. 139, 139–156 (2019).


    Google Scholar
     

  • Rodriguez-Brotons, A. et al. Impact of pancreatic rat islet density on cell survival during hypoxia. J. Diabetes Res. 2016, 3615286 (2016).


    Google Scholar
     

  • Paredes-Juarez, G. A. et al. DAMP production by human islets under low oxygen and nutrients in the presence or absence of an immunoisolating-capsule and necrostatin-1. Sci. Rep. 5, 14623 (2015).


    Google Scholar
     

  • Ludwig, B. et al. A novel device for islet transplantation providing immune protection and oxygen supply. Horm. Metab. Res. 42, 918–922 (2010).


    Google Scholar
     

  • Neufeld, T. et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS ONE 8, e70150 (2013).


    Google Scholar
     

  • Ludwig, B. et al. Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. Proc. Natl Acad. Sci. USA 114, 11745–11750 (2017).


    Google Scholar
     

  • Ludwig, B. et al. Transplantation of human islets without immunosuppression. Proc. Natl Acad. Sci. USA 110, 19054–19058 (2013).


    Google Scholar
     

  • Krishnan, S. R. et al. A wireless, battery-free device enables oxygen generation and immune protection of therapeutic xenotransplants in vivo. Proc. Natl Acad. Sci. USA 120, e2311707120 (2023).


    Google Scholar
     

  • Razavi, M. et al. A collagen based cryogel bioscaffold that generates oxygen for islet transplantation. Adv. Funct. Mater. 30, 1902463 (2020).


    Google Scholar
     

  • Pedraza, E., Coronel, M. M., Fraker, C. A., Ricordi, C. & Stabler, C. L. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl Acad. Sci. USA 109, 4245–4250 (2012).


    Google Scholar
     

  • Coronel, M. M., Geusz, R. & Stabler, C. L. Mitigating hypoxic stress on pancreatic islets via in situ oxygen generating biomaterial. Biomaterials 129, 139–151 (2017).


    Google Scholar
     

  • Liang, J. P. et al. Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater. 130, 268–280 (2021).


    Google Scholar
     

  • Wang, L. H. et al. An inverse-breathing encapsulation system for cell delivery. Sci. Adv. 7, eabd5835 (2021).


    Google Scholar
     

  • Wang, L.-H. et al. A bioinspired scaffold for rapid oxygenation of cell encapsulation systems. Nat. Commun. 12, 5846 (2021).


    Google Scholar
     

  • Korsgren, O. et al. Current status of clinical islet transplantation. Transplantation 79, 1289–1293 (2005).


    Google Scholar
     

  • Ricordi, C. & Strom, T. B. Clinical islet transplantation: advances and immunological challenges. Nat. Rev. Immunol. 4, 259–268 (2004).


    Google Scholar
     

  • Owyang, S., Jastrzebska-Perfect, P., Scott, M. & Traverso, G. Re-considering quantity requirements in islet transplantation. Nat. Rev. Bioeng. 1, 382–384 (2023).


    Google Scholar
     

  • Brennan, D. C. et al. Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am. J. Transplant. 16, 509–517 (2016).


    Google Scholar
     

  • D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).


    Google Scholar
     

  • D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).


    Google Scholar
     

  • Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).


    Google Scholar
     

  • Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).


    Google Scholar
     

  • Shapiro, A. M. J. & Verhoeff, K. A spectacular year for islet and stem cell transplantation. Nat. Rev. Endocrinol. 19, 68–69 (2023).


    Google Scholar
     

  • Gala-Lopez, B. L. et al. Subcutaneous clinical islet transplantation in a prevascularized subcutaneous pouch — preliminary experience. CellR4 4, e2132 (2016).


    Google Scholar
     

  • Tang, L., Jennings, T. A. & Eaton, J. W. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc. Natl Acad. Sci. USA 95, 8841–8846 (1998).


    Google Scholar
     

  • Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).


    Google Scholar
     

  • Noskovicova, N., Hinz, B. & Pakshir, P. Implant fibrosis and the underappreciated role of myofibroblasts in the foreign body reaction. Cells 10, 1794 (2021).


    Google Scholar
     

  • Iglesias-Lopez, C., Agusti, A., Obach, M. & Vallano, A. Regulatory framework for advanced therapy medicinal products in Europe and United States. Front. Pharmacol. 10, 921 (2019).


    Google Scholar
     

  • Piemonti, L. et al. US food and drug administration (FDA) panel endorses islet cell treatment for type 1 diabetes: a pyrrhic victory? Transpl. Int. 34, 1182–1186 (2021).


    Google Scholar
     

  • Iglesias-Lopez, C., Obach, M., Vallano, A. & Agusti, A. Comparison of regulatory pathways for the approval of advanced therapies in the European Union and the United States. Cytotherapy 23, 261–274 (2021).


    Google Scholar
     

  • Hering, B. J. et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 39, 1230–1240 (2016).


    Google Scholar
     

  • Ricordi, C. & Japour, A. Transplanting islet cells can fix brittle diabetes. Why isn’t it available in the U.S.? CellR4 7, e2768 (2019).


    Google Scholar
     

  • Weir, G. C. & Bonner-Weir, S. Why pancreatic islets should be regarded and regulated like organs. CellR4 9, e3083 (2021).


    Google Scholar
     

  • Witkowski, P. et al. The demise of islet allotransplantation in the United States: a call for an urgent regulatory update. Am. J. Transplant. 21, 1365–1375 (2021).


    Google Scholar
     

  • Witkowski, P. et al. Arguments against the requirement of a biological license application for human pancreatic islets: the position statement of the islets for US collaborative presented during the FDA advisory committee meeting. J. Clin. Med. 10, 2878 (2021).


    Google Scholar